期刊文献+

融合结构数据和语义的专利技术主题识别研究——以非小细胞肺癌治疗领域为例

Patented Technology Topic Recognition Fusing Structural Data and Semantics:Taking the Field of Non-small Cell Lung Cancer as an Example
下载PDF
导出
摘要 针对专利技术主题识别方法存在缺少语义语境、可解释性弱和主题界定模糊等问题,提出一种融合专利结构数据和文本语义的技术主题识别分析方法。该方法以专利IPC作为结构数据改进纯文本主题建模,获取由IPC和专家分类意见指导的主题词向量,并使用word2vec模型获取专利文本语义词向量,将二者结果进行向量拼接,进而获得易于解释的精准技术主题,满足细粒度分析要求。最后,以非小细胞肺癌治疗领域作为实证研究,证实该方法的科学性、有效性和实用性。 Aiming at the problems of lack of semantic context,weak interpretability and ambiguous topic definition in the patent technical subject recognition method,a technical subject recognition and analysis method integrating patent structure data and text semantics is proposed.The method uses patent IPC as structural data to improve the topic modeling of plain text,obtains topic word vectors guided by IPC and expert classification opinions,and uses word2vec model to obtain semantic word vectors of patent texts.The precise technical theme of,to meet the requirements of fine-grained analysis.Finally,taking the field of non-small cell lung cancer treatment as an empirical study,the scientificity,effectiveness and practicality of the method are confirmed.
作者 沈漫竹 于慧娴 李倩 袁红梅 Shen Manzhu;Yu Huixian;Li Qian;Yuan Hongmei(School of Business Administration,Shenyang Pharmaceutical University,Shenyang 110016,China)
出处 《科技管理研究》 CSSCI 北大核心 2022年第13期131-137,共7页 Science and Technology Management Research
基金 沈阳药科大学工商管理学院学科建设课题“基于专利数据的制造产业技术情报分析”(2021-sygsxk-01)。
关键词 主题模型 IPC-LDA word2vec 向量拼接 非小细胞肺癌 topic model IPC-LDA word2vec vector stitching non-small cell lung cancer
  • 相关文献

参考文献9

二级参考文献86

  • 1陈玲,林平,段尧清.产业链视角下结合K-means和LDA的专利技术主题挖掘与趋势分析——以虚拟现实技术为例[J].知识管理论坛,2020(3):135-146. 被引量:5
  • 2郭炜强,文军,文贵华.基于贝叶斯模型的专利分类[J].计算机工程与设计,2005,26(8):1986-1987. 被引量:13
  • 3陈达仁,王俊杰,周永铭.由中国专利探讨TFT-LCD专利表现及主要公司技术布局[J].图书情报知识,2006,23(6):96-104. 被引量:6
  • 4谌志群,张国煊.文本挖掘与中文文本挖掘模型研究[J].情报科学,2007,25(7):1046-1051. 被引量:50
  • 5Martin Meyer.What do we Know About Innovation in Nanotech-nology[J].Scientometrics,2007,70(3):779-810.
  • 6Ronen Feldman,Ido Dagan.Knowledge Discovery in TextualDatabases(KDT)[C].In; Proceedings of the First InternationalConference on Knowledge Discovery and Data Mining.Montre-al,Canada,1995:112-117.
  • 7Gabriel Pui Cheong Fung,Jeffrey Xu Yu,Wai Lam.Stock Pre-diction:Integrating Text Mining Approach using Real-TimeNews[C].In:Proceedings of 2003 IEEE International Confer-ence on Computational Intelligence for Financial Engineering.Hong Kong,China,2003,395-402.
  • 8Aaron M Cohen,William RHersh.A Survey of Current Work inBiomedical Text Mining[J].Briefings in Bioinformatics,2005,6(1):57-71.
  • 9Byungun Yoon,Yongtae Park.A Text-mining-based PatentNetwork:Analytical tool for High-technology Trendf J].Journalof High Technology Management Research,2004,15(1):37-50.
  • 10Jeonghwan Jeon,Changyong Lee,Yongtae Park.How to Use Pa-tent Information to Search Potential Technology Partners in OpenInnovation[J].Journal of Intellectual Property Rights,2011,26(5):385-393.

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部