摘要
Oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)are the key processes in water splitting.Compared with the two-electron process in HER,the four-electron process of OER is slow because of the more complex series of reactions.Therefore,a good understanding of the direct O_(2) evolution mechanism(DOEM)in OER is crucial to design high-efficiency catalysts to overcome the limitations imposed by the conventional adsorption evolution mechanism.In this work,honeycomb Ni_(3)N-Co_(3)N was prepared on carbon cloth(Ni_(3)N-Co_(3)N/CC)to investigate the DOEM.Density functional theory and in situ Raman scattering spectroscopy demonstrated that the OER process on Ni_(3)N-Co_(3)N/CC proceeded via the DOEM pathway,in which Ni_(3)N and Co_(3)N share the roles of dragging OH^(-),splitting off H-O bonds,and adsorbing other OH^(-),leading to significantly reduced Gibbs’s energy barriers of ΔG_(*OH) to ΔG_(O*)and ΔG_(O*)to ΔG_(O*OH).Moreover,the vertical honeycomb structure and conductive CC substrate contributed to the structural stability,conductivity,and quick O_(2) release capability.The Ni_(3)N-Co_(3)N/CC required low overpotentials of 320 and 495 mV to reach a current density of 10 and 100 mA cm^(-2),respectively.Moreover,the Ni_(3)N-Co_(3)N/CC delivered excellent stability with>90% retention of the initial current density over an 80-h-long test.
电解水反应包括析氢和析氧反应.相对于2电子转移的析氢反应,4电子转移的析氧反应比较缓慢.因此,理解析氧反应机制有助于设计高效电催化剂.其中析氧反应机制可以分为传统吸附机制和直接氧析出机制.在本文中,我们将蜂窝状Ni_(3)N-Co_(3)N生长在碳布上来调研其直接氧析出机制.密度泛函理论和原位拉曼证明了Ni_(3)N-Co_(3)N在反应过程中是直接氧析出机制,其中Ni_(3)N和Co_(3)N共同拉拽OH^(-)、劈裂H-O和吸附另外的OH^(-)基团,从而降低了反应活化能.不仅如此,蜂窝状结构和导电基体有助于结构稳定和提高氧气释放速率.因此,Ni_(3)N-Co_(3)N/CC在10和100 mA cm^(-2)电流密度下提供了320和495 mV的小过电势.同时,它也拥有更好的长期稳定性.
作者
Ping Qin
Hao Song
Qingdong Ruan
Zhifeng Huang
Yue Xu
Chao Huang
秦萍;宋豪;阮庆东;黄陟峰;徐月;黄超(Department of Physics,Hong Kong Baptist University,Kowloon Tong,Kowloon,Hong Kong SAR,China;Department of Physics,City University of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong,China;The State Key Laboratory of Refractories and Metallurgy,Institute of Advanced Materials and Nanotechnology,Wuhan University of Science and Technology,Wuhan 430081,China;State Key Laboratory of Material Processing and Die&Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
基金
financially supported by the City University of Hong Kong HK Tech 300(SF202109174)
the National Natural Science Foundation of China(51902118)
the International Postdoctoral Exchange Fellowship program(PC2021026)。