期刊文献+

珠磨驱动微晶石墨自研磨高效制备小尺寸石墨烯作为导电添加剂

High-efficiency,self-grinding exfoliation of small graphene nanosheets from microcrystalline graphite driven by microbead milling as conductive additives
原文传递
导出
摘要 在过去十五年,将块状石墨直接高产率、高效率地剥离为石墨烯一直是一个重大挑战.针对这一问题,本文提出了一种自研磨剥离新概念,即利用石墨颗粒之间相互剪切摩擦,从微晶石墨矿中剥离石墨烯.实验中通过微珠作为研磨介质驱动高浓度石墨晶体颗粒相互研磨的过程成功执行了这一概念.经证实,自研磨大幅提高了石墨烯的剥离产率(从6.3%提高至100%),并获得了破纪录的剥离效率(7.5 g^(-1)hL^(-1)),在实验室实现了从微晶石墨到石墨烯的公斤级转化.所制备的石墨烯纳米片横向尺寸小(298 nm),C/O原子比与起始微晶石墨相同,导电性良好.该小尺寸石墨烯适合作为锂离子电池的导电添加剂,在改善电池的比容量和循环稳定性方面优于商用碳基导电颗粒. Direct mass exfoliation of graphene from bulk graphite with high yield and productivity for commercial applications is challenging.This work proposes self-grinding exfoliation using the mutual shear friction of graphite particles to fabricate graphene from microcrystalline graphite.The concept is implemented using microbeads as the grinding medium to drive the shear friction between graphite nanocrystals in a high-concentration paste.The proposed approach substantially improves graphene yield from 6.3% to 100% and simultaneously generates a record productivity of 7.5 g h^(-1)L^(-1),achieving total graphite-to-graphene conversion on the kilogram scale.The as-prepared graphene nanosheets have an average lateral size of 298 nm and the same C/O atomic ratio as the pristine graphite.In addition,the well-exfoliated,small nanosheets display good electrical conductivity and exhibit significant potential as conductive additives that improve the specific capacity and cyclic stability of Li-ion batteries better than commercial carbon-based conductive particles.
作者 黄丽梅 李豪 王新新 丁元力 王建锋 江雷 Limei Huang;Hao Li;Xinxin Wang;Yuanli Ding;Jianfeng Wang;Lei Jiang(College of Materials Science and Engineering,Hunan University,Changsha 410082,China;College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,China;CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2022年第9期2463-2471,共9页 中国科学(材料科学(英文版)
基金 supported by the National Natural Science Foundation of China(51973054) the High-level Innovative Talent Project in Hunan Province(2018RS3055) the Young Talents Program in Hunan Province(2020RC3024) the Natural Science Funds of Hunan Province for Distinguished Young Scholars(2021JJ10018) the Science Research Project of Hunan Provincial Education Department(21B0027)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部