期刊文献+

通过微量锰掺杂直接合成体超导的Fe(Te,Se)单晶

Bulk superconductivity in one-step grown Fe(Te,Se)crystals free of interstitial iron by minor Mn doping
原文传递
导出
摘要 无砷的铁硒基超导体Fe(Te,Se)在高场应用方面具有广阔的前景,但至今仍缺乏制备体超导块材的有效方法.本文通过微量的Mn掺杂,一步法直接合成了无间隙铁的厘米尺寸高性能体超导单晶.通过电阻、磁化率与比热表征,发现Mn掺杂浓度为1%时,样品具有最好的体超导电性,且上临界场和临界电流密度相比未掺杂时显著提高.最佳掺杂样品在2 K时自场下的临界电流密度高达4.5×10^(5)A cm^(-2),且在高场下衰减很小.利用扫描隧道显微镜观测,证实了微量锰掺杂有效消除了层间的间隙铁原子.本工作首次提供了一种大规模制备高性能Fe(Te,Se)超导块材的实用方法,为其未来高场应用奠定了基础. The iron-based nontoxic chalcogenide superconductor Fe(Te,Se)has great potential for high magnetic field applications while it lacks a reliable method to produce bulk superconductor so far.Here we report a one-step synthesis method to grow high-quality Fe(Te,Se)single crystals free of interstitial iron atoms through minor Mn doping.Bulk superconductivity is revealed in the as-grown centimetersized crystals with the optimal doping level of 1% Fe atoms substituted by Mn,which is systematically demonstrated by sharp electrical resistivity and magnetic susceptibility transitions,and large specific heat jumps.Compared with the undoped sample,the optimally doped one shows a significantly enhanced upper critical field,and a large self-field critical current density J_(c) of 4.5×10^(5)A cm^(-2) at 2 K(calculated by the Bean model),which maintains large values under high fields.The absence of interstitial iron atoms is testified by the scanning tunneling microscopy,and the effect of Mn doping is discussed.Our results provide a practical method by minor Mn doping to directly synthesize high-performance Fe(Te,Se)bulks that allow for future high-field superconducting applications.
作者 谷亚东 周孟虎 张孟迪 吴彦伟 阮彬彬 侯兴元 张凡 江培杰 杨清松 李更 马明伟 陈根富 单磊 任治安 Yadong Gu;Menghu Zhou;Mengdi Zhang;Yanwei Wu;Binbin Ruan;Xingyuan Hou;Fan Zhang;Peijie Jiang;Qingsong Yang;Geng Li;Mingwei Ma;Genfu Chen;Lei Shan;Zhian Ren(Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;Beijing Academy of Quantum Information Sciences,Beijing 100193,China;Information Materials and Intelligent Sensing Laboratory of Anhui Province,Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China;Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education,Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2022年第9期2472-2478,共7页 中国科学(材料科学(英文版)
基金 supported by the National Key Research and Development Program of China(2018YFA0704200,2017YFA0302904,2019YFA0308500,and 2018YFA0305602) the National Natural Science Foundation of China(12074414,12074002,52072401,11804379,and 11774402) the Recruitment Program for Leading Talent Team of Anhui Province(2019-16) the Strategic Priority Research Program of Chinese Academy of Sciences(XDB25000000)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部