摘要
本文在一个具有高度几何特征的哈代空间H^(p)(Θ)(0<p≤1)上讨论了傅里叶变换.此哈代空间是在R^(n)上的连续多尺度椭球覆盖Θ上定义的,且覆盖中椭球的形状可以随位置及其尺寸的变化而迅速发生变化.
We develop the Fourier transform of a highly geometric Hardy space H^(p)(Θ),for the full range 0<p≤1,which are constructed over continuous multi-level ellipsoid coverΘof R^(n) with high anisotropy in the sense that the ellipsoids can change shape rapidly from point to point and from level to level.
作者
孙嘉伟
余安康
杨珍珍
李宝德
SUN Jiawei;YU Ankang;YANG Zhenzhen;LI Baode(College of Mathematics and Systems Science,Xinjiang University,Urumqi,Xinjiang,830046,P.R.China)
出处
《数学进展》
CSCD
北大核心
2022年第4期695-703,共9页
Advances in Mathematics(China)
基金
Supported by NSFC (No.11861062)
Xinjiang Training of Innovative Personnel Natural Science Foundation of China (No.2020D01C048)。