摘要
设m=30s^(2)-7,其中s是使6s^(2)+13及15s^(2)-8为奇素数的正奇数,结合初等数论方法及二元四次丢番图方程的结论,证明了椭圆曲线y^(2)=(x-6)(x^(2)+6x+m)除整数点(x,y)=(6,0)外无其他非平凡整数点。
Let m=30s^(2)-7,where s is a positive odd number such that 6s^(2)+13 and 15s^(2)-8 are odd primes.Combined with the method of elementary number theory and the conclusion of the binary quadratic Diophantine equation,it is proved that the elliptic curve y^(2)=(x-6)(x^(2)+6x+m)has no other non-trivial integer points except the integer point(x,y)=(6,0).
作者
王钊
杨海
曹雅丽
WANG Zhao;YANG Hai;CAO Yali(School of Science,Xi an Polytechnic University,Xi an 710048,China)
出处
《沈阳大学学报(自然科学版)》
CAS
2022年第4期333-338,共6页
Journal of Shenyang University:Natural Science
基金
国家自然科学基金资助项目(11226038,11371012)
陕西省自然科学基金资助项目(2021JM443)。
关键词
椭圆曲线
整数点
同余
二次剩余
丢番图方程
elliptic curve
integral points
congruence
quadratic residue
Diophantine equation