期刊文献+

椭圆曲线y^(2)=(x-6)(x^(2)+6x+m)的整数点

Integral Points on Elliptic Curve y^(2)=(x-6)(x^(2)+6x+m)
下载PDF
导出
摘要 设m=30s^(2)-7,其中s是使6s^(2)+13及15s^(2)-8为奇素数的正奇数,结合初等数论方法及二元四次丢番图方程的结论,证明了椭圆曲线y^(2)=(x-6)(x^(2)+6x+m)除整数点(x,y)=(6,0)外无其他非平凡整数点。 Let m=30s^(2)-7,where s is a positive odd number such that 6s^(2)+13 and 15s^(2)-8 are odd primes.Combined with the method of elementary number theory and the conclusion of the binary quadratic Diophantine equation,it is proved that the elliptic curve y^(2)=(x-6)(x^(2)+6x+m)has no other non-trivial integer points except the integer point(x,y)=(6,0).
作者 王钊 杨海 曹雅丽 WANG Zhao;YANG Hai;CAO Yali(School of Science,Xi an Polytechnic University,Xi an 710048,China)
出处 《沈阳大学学报(自然科学版)》 CAS 2022年第4期333-338,共6页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(11226038,11371012) 陕西省自然科学基金资助项目(2021JM443)。
关键词 椭圆曲线 整数点 同余 二次剩余 丢番图方程 elliptic curve integral points congruence quadratic residue Diophantine equation
  • 相关文献

参考文献18

二级参考文献72

  • 1邱德荣,张贤科.Mordell-Weil groups and Selmer groups of twin-prime elliptic curves[J].Science China Mathematics,2002,45(11):1372-1380. 被引量:11
  • 2Baker A.Linear forms in the logarithms of algebraic number Ⅰ.Mathematika,1966.13:204-216; Ⅱ ibid,1967,14:102-107:Ⅲ ibid,1967.14:220-228; Ⅳ ibid; 1968,15:204-216.
  • 3Stroeker R J,Tzanakis N.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.Acta Arith,1994,29(2):177-196.
  • 4Stroeker R J,Tzanakis N.On the elliptic logarithm method for elliptic diophantine equations:reflections and an improvement.Experimental Mathemetics,1999,8(2):135-149.
  • 5Stroeker R J,Tzanakis N.Computing all integer solutions of a genus 1 equation.Math Comp.,2003,72:1917-1933.
  • 6Bremner A,Tzanakis N.Integral points on y2=x3-7x+10.Math Comp.,1983,41(164):731-741.
  • 7Zhu Hui Lin,Chen Jian Hun.Integral point on a class of elliptic curve.Wuhan University-Journal of Natural Sciences,2006,11(3):477-480.
  • 8Zhu Hui Lin,Chen Jian Hua.Integral point on certain elliptic curve.Padova:Rend.Sem.Mat.Univ.,2008,119:1-20.
  • 9Zagier D.Large integral point on elliptic curves.Math Comp.,1987,48(177):425-536.
  • 10Hua Luo Geng.Introduction to number theory.Beijing:Science Press,1979.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部