期刊文献+

基于Kmeans++的自适应超像素投点方法 被引量:1

An Adaptive Initializing Superpixel Seed Points Method Based on Kmeans++
下载PDF
导出
摘要 超像素分割作为目标分割的预处理环节,能够极大地减少后续处理的数据量,对图像分割起着至关重要的作用。在大部分超像素生成算法中,初始种子点的选取都是以规则网格或随机确定,这容易导致欠分割。为了得到良好的初始种子点分布,减少种子点选取引起的欠分割,提出了一种基于Kmeans++的自适应确定超像素种子点方法,并由此改进了简单非迭代聚类算法(Simple Non-Iterative Clustering,SNIC)。实验结果表明,在不耗费大量计算成本的前提下,改进的SNIC算法相比传统算法能够得到更高的边界召回率和更低的欠分割错误率。 As a pre-processing step of target segmentation,superpixel can greatly reduce the amount of subsequent data processing,and plays a vital role in image segmentation.In most superpixel algorithms,seed points are sampled on a regular grid or initialized randomly,which easily leads to under-segmentation.In order to obtain a good distribution of seed point and avoid under-segmentation,an adaptively initializing superpixel seeds method based on Kmeans++is proposed and used to improve the algorithms of SNIC.The experimental results show that the improved SNIC algorithm can get higher boundary recall rate and lower under-segmentation error rate than that of the traditional algorithm without a lot of computational cost.
作者 杨志立 张东 YANG Zhili;ZHANG Dong(Department of Microelectronics,School of Physics and Technology,Wuhan University,Wuhan 430072,CHN)
出处 《半导体光电》 CAS 北大核心 2022年第3期585-591,共7页 Semiconductor Optoelectronics
基金 国家重点研发计划项目(2011CB707900)。
关键词 图像分割 超像素 SLIC SNIC Kmeans++ image segmentation superpixel SLIC SNIC Kmeans++
  • 相关文献

参考文献5

二级参考文献44

  • 1贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法[J].计算机学报,2005,28(5):882-891. 被引量:28
  • 2张玲,郭磊民,何伟,陈丽敏.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93. 被引量:27
  • 3张树军,魏汝祥,范春利.电气设备红外故障诊断中的影响因素分析[J].激光与红外,2007,37(2):140-142. 被引量:21
  • 4Boykov Y,Jolly M P.Interactive organ segmentation using graph cuts[C]//Proceedings of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention.Pittsburgh,USA:Springer,2000:276-286.
  • 5Boykov Y,Jolly M P.Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Vancouver,Canada:IEEE,2001:105-112.
  • 6Rother C,Kologorov V,Blake A.“Grab Cut”:interactive foreground extraction using iterated graph cuts[C]//Proceedings of the ACM SIGGRAPH Conference.Los Angeles,USA:ACM,2004:309-314.
  • 7Li Y,Sun J,Tang C K,et al.Lazy snapping[J].ACM Transactions on Graphics,2004,23(3):303-308.
  • 8Radhakrishna A,Shaji A,Smith K,et al.SLIC superpixels,Technical Report 149300[R].EPFL,2010.
  • 9Radhakrishna A,Shaji A,Smith K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].Journal of Latex Class Files,2011,6(1).
  • 10Shi Jianbo,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),2000,22(8):888-905.

共引文献50

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部