期刊文献+

存零约束优化问题的部分罚函数方法 被引量:3

Partial Penalty Function Method for Switching Constraints Optimization Problem
原文传递
导出
摘要 存零约束优化问题是近年提出的一类新的优化问题,因存零约束的存在,使得常用的约束规范不满足,以至于现有算法的收敛性结果大多不能直接应用于该问题.文章将难处理的存零约束放于目标函数,提出了部分罚函数方法.并证明在存零约束的线性独立约束规范下,罚问题的稳定点序列的聚点为原问题的弱稳定点.同时存在罚问题的局部最优解序列收敛于原问题的任意严格局部最优解.数值结果表明该方法是可行的. In this paper,the switching-constrained optimization problem is a new optimization problem proposed in recent years.Due to the existence of switchingconstrained,the commonly used constraint qualification is not satisfied,thus,most of the convergence results of existing algorithms cannot be directly applied to this problem.In this paper,we put the difficult switching constraint on the objective function and propose a partial penalty function method.It is proved that under the linear independent constraint qualification with switching constraint,the convergence of the sequence of stable points of the penalty problem is the weak stationary point of the original problem.At the same time,for any strictly local optimal solution of the original problem,there exists a local optimal solution sequence of the penalty problem which converges to it.Finally,numerical results show that the penalty function method is feasible.
作者 张婷婷 李高西 唐莉萍 黄应全 ZHANG Tingting;LI Gaoxi;TANG Liping;HUANG Yingquan(School of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067;School of Mathematics Sciences,Chongqing Normal University,Chongqing 401331;Chongqing Key Laboratory of Social Economy and Applied Statistics,Chongqing 400067)
出处 《系统科学与数学》 CSCD 北大核心 2022年第5期1234-1245,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11901068,12171060) 重庆市基础研究与前沿探索(cstc2019jcyj-msxmX0456,cstc2021jcyj-msxmX0499) 重庆工商大学科研项目(1952034,ZDPTTD201908)资助课题。
关键词 非线性规划 存零约束 部分罚函数方法 Nonlinear programming switching constraints partial penalty method
  • 相关文献

参考文献2

二级参考文献18

  • 1J. Burke, Calmness and exact penalization, SIAM J. Control and Optimization, 1991, 29: 493-497.
  • 2R. Cominetti and J. P. Dussault, Stable exponential-penalty algorithm with superlinear conver- gence, J. Optimiz. Theory Appls., 1994, 83: 285-309.
  • 3A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Methods for Nonlinear Constraints in Optimization Calculation, in The State of the Art in Numerical Analysis, I. S. Duff. and G. A. Watson, eds., Clarendon Press, Oxford, 1997: 363-390.
  • 4J. P. Evans, F. J. Gould, and J. W. Tolle, Exact penalty function in nonlinear programming, Math. Prog., 1973, 4: 72-97.
  • 5R. Fletcher, An exact penalty function for nonlinear programming with inqualities, Math. Prog., 1973. 5:129 -150.
  • 6R. Fletcher, Penalty Functions in Mathematical Programming, the State of the Art, A. Bachen, et al. eds., Springer-Verlag, 1983:87 -114.
  • 7T. Glade and E. Polak, A multiplier method with automatic limitation of penalty growth, Math. Prog., 1979, 17:140- 155.
  • 8S. P. Han and O. L. Mangasarian, A dual differentiable exact penalty function, Math. Prog., 1983, 25:293 -306.
  • 9S. Lucidi, New results on a continuously differentiable exact penalty function, SIAM Journal on Optimization, 1992, 2: 558-574.
  • 10G. D. Pillo and L. Groppo, A continuously differentiable exact penalty function, SIAM Y. Control and Optim., 1985, 23:72- 84.

共引文献4

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部