摘要
该文研究了一类时滞反应扩散登革热传染病模型行波解的存在性与不存在性.首先,利用辅助系统并结合Schauder不动点定理,证明了当基本再生数R_(0)>1,c>c_(*)时,系统存在单调有界正行波解.其次,当R_(0)>1,0<C<c_(*)时,借助双边Laplace变换,得到行波的不存在性;运用比较原理和反证法,证明了当R_(0)≤1,c>0时行波的不存在性.最后,从理论和数值方面探讨了潜伏期和扩散率对阈值速度c_(*)的影响.结论表明:适当延长潜伏期或减少个体扩散可降低疾病传播速度.
In this paper,we investigate the existence and nonexistence of traveling wave solution(TWS)for a reaction-diffusion dengue epidemic model with time delays.Firstly,by introducing an auxiliary system and combining with Schauder’s fixed-point theorem,it is proved that when the basic reproduction number R_(0)>1,c>c_(*),the system admits a positive bounded monotone TWS.Secondly,when R_(0)>1,00 with the aid of comparison principle and contradictory arguments.Lastly,the effects of incubation period and individual diffusion on the threshold speed c_(*)are studied theoretically and numerically.The conclusion shows that prolonging the length of incubation period or decreasing the individual diffusion will reduce the speed of disease transmission.
作者
王凯
赵洪涌
Wang Kai;Zhao Hongyong(Department of Mathematics,College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211106)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2022年第4期1209-1226,共18页
Acta Mathematica Scientia
基金
国家自然科学基金(11971013,12101309)
江苏省研究生科研与实践创新计划项目基金(KYCX20_0169)
中国博士后科学基金(2021M691577)。
关键词
行波解
登革热
时滞
基本再生数
阈值速度
Traveling wave solution
Dengue
Delay
Basic reproduction number
Threshold speed