期刊文献+

电感耦合等离子体放电特性的三维仿真研究

Three-Dimensional Simulation Research on Discharge Characteristics of Inductively Coupled Plasma
下载PDF
导出
摘要 针对电感耦合等离子体(ICP)的放电问题,设计了一种闭式透波腔体构型,建立了ICP的流体力学模型,并利用多物理场仿真平台COMSOL进行三维仿真研究。分析了放电过程中电子密度、电子温度和等离子体电势等典型参数随时间的变化规律,在此基础上改变射频电源的功率、腔体内气压等条件,获得ICP的参数范围以及空间梯度分布。结果表明,放电功率主要影响等离子体参数的数值范围,而气压的改变则对等离子体参数的数值和空间分布都会产生影响。当射频电源功率从100 W增加到300 W时,电子密度峰值从2.54×10^(17) m^(-3)增加到5.68×10^(17) m^(-3),同时反应稳定后加热区感应出的电势和相应的电子温度呈现小幅降低;腔内气压在一定范围内升高会使得电子密度明显增加,气压从10 Pa增加到30 Pa,电子密度从9.12×10^(17) m^(-3)上升到3.62×10^(18) m^(-3),但气压过高会导致等离子体参数分布的均匀性变差。 Aiming at the discharge problem of inductively coupled plasma(ICP),a closed wave-transmitting cavi-ty configuration is designed,the fluid mechanics model of ICP is established,and the multi physical simulation software COMSOL is used for three-dimensional simulation research.The variation laws of typical parameters such as electron density,electron temperature and plasma potential with time in the discharge process are analyzed.On this basis,the power of radio frequency power supply,the air pressure in the cavity and other conditions are changed to obtain the parameter range and spatial gradient distribution of ICP.The results show that the discharge power mainly affects the numerical range of plasma parameters,and the change of air pressure has an effect on the numerical value and spatial distribution of plasma parameters.When the power of radio frequency power supply increases from 100 W to 300 W,the peak electron density increases from 2.54×10^(17) m^(-3) to 5.68×10^(17) m^(-3),and the electric potential induced in the heating zone and the corresponding electron temperature decrease slightly after the reaction is stable.Increasing the air pressure in the cavity within a certain range will significantly increase the electron density.The air pressure increases from 10 Pa to 30 Pa,and the electron density increases from 9.12×10^(17) m^(-3) to 3.62×10^(18) m^(-3).However,the uniformity of plasma parameter distribution will deteriorate if the air pressure is too high.
作者 郭旭 李颖晖 邱辰霖 常怡鹏 王瑶东 Guo Xu;Li Yinghui;Qiu Chenlin;Chang Yipeng;Wang Yaodong(Air Force Engineering University,Xi’an 710038,China;Unit 93131 of PLA,Beijing 100038,China)
出处 《航空兵器》 CSCD 北大核心 2022年第3期82-87,共6页 Aero Weaponry
基金 国家自然科学基金项目(11805277)。
关键词 感应耦合等离子体 流体力学 放电特性 有限元方法 雷达回波 隐身 飞行器 inductively coupled plasma fluid mechanics discharge characteristics finite element method radar echo stealth aircraft
  • 相关文献

参考文献2

二级参考文献29

  • 1杨利霞,许红蕾,孙栋,王洪金.双各向异性色散介质电磁波传播Z-时域有限差分分析[J].电波科学学报,2015,30(3):423-428. 被引量:4
  • 2程嘉,朱煜,汪劲松.感应耦合等离子体刻蚀机二维放电模拟[J].Journal of Semiconductors,2007,28(6):989-994. 被引量:4
  • 3Ghorui S,Das A K. Arc plasma devices:evolving mechanical design from numerical simulation[J].Pramana-Joumal of Physics,2013,(4):685-699.
  • 4Punjabi S B,Joshi N K,Mangalvedekar H A. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere[J].{H}Physics of Plasmas,2012.012108.
  • 5Xiong R H,Nikiforov A Y,Vanraes P. Characteristics of an underwater direct current discharge in bubbles and the temperature distribution in the bubbles[J].{H}Physics of Plasmas,2012.023501.
  • 6Jegger D,Sundaram S,Shah K. Using computational fluid dynamics to evaluate a novel venous cannula (Smart canula (R[J].{H}PERFUSION,2007,(4):257-265.
  • 7Nishizawa S. Numerical modeling of SiC single crystal growth-sublimation and hot-wall epitaxy[J].{H}Journal of Crystal Growth,2009.871-874.
  • 8Kim H C,Iza F,Yang S S. Particle and fluid simulations of low-temperature plasma discharges:benchmarks and kinetic effects[J].{H}Journal of Physics D:Applied Physics,2005,(19):283-301.
  • 9Wang W M,Li D Y,Hu J. Numerical simulation of fluid flow and heat transfer in a plasma spray gun[J].The International Journal of Advanced Manufacturing Technology,2005.537-543.
  • 10Surendra M. Radio frequency discharge benchm ark model comparison[J].{H}Plasma Sources Science and Technology,1995,(1):56-60.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部