期刊文献+

模和环的(m,n)-余挠维数

The (m,n)-cotorsion dimensions of modules and rings
原文传递
导出
摘要 设m,n是两个任意取定的正整数,引入了模与环的(m,n)-余挠维数,证明了在稍强(m,n)-凝聚环上,模与环的(m,n)-余挠维数许多类似于经典同调维数的性质,给出了稍强(m,n)-凝聚环是von-Neumann正则环的一些等价刻画。 Let m, n be two given positive integers. It is shown that over slightly(m,n)-coherent rings, the(m,n)-cotorsion dimensions of modules and rings share many nice properties as the classical homological dimensions. Some equivalent characterizations that slightly(m,n)-coherent rings are von-Neumann regular rings are given.
作者 王亚丽 赵仁育 WANG Ya-li;ZHAO Ren-yu(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2022年第6期8-14,22,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11861055,12061061)。
关键词 (m n)-余挠维数 (m n)-余挠包络 (m n)-平坦覆盖 稍强(m n)-凝聚环 (m,n)-cotorsion dimension (m,n)-cotorsion envelope (m,n)-flat cover slightly(m,n)-coherent ring
  • 相关文献

参考文献1

二级参考文献12

  • 1Anderson F W, Fuller K R. Rings and Categories of Modules. New York: Springer-Verlag, 1974.
  • 2Chen J L, Ding N Q. On n-coherent rings. Comm Algebra, 1996, 24(10): 3211-3216.
  • 3Ding N Q. On envelopes with the unique mapping property. Comm Algebra, 1996, 24(4): 1459-1470.
  • 4Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000.
  • 5Fuchs L, Salce L. Modules over Valuation Domain. Lecture Notes Pure Appl Math. Vol 97. New York and Basel: Marcel Dekker, Inc., 1985.
  • 6Gobel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. Berlin-New York: Walter de Gruyter, 2006.
  • 7Lam T Y. Lectures on Modules and Rings. New York-Heidelberg-Berlin: Springer-Verlag: 1999.
  • 8Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979.
  • 9Wisbauer R. Foundations of Module and Ring Theory. Gordon and Breach, 1991.
  • 10Xu J. Flat Covers of Modules. Lecture Notes in Math 1634. Berlin-Heidelberg-New York: Springer-Verlag, 1996.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部