期刊文献+

一类乘法幂等半环的格林关系 被引量:2

Green’s relations on a class of semiring which multiplicative reduct is an idempotent semigroup
原文传递
导出
摘要 研究了满足附加恒等式x+x+x≈x,2x+2y≈2(x+y)的乘法幂等半环,给出了与该半环的乘法半群(加法半群)的格林关系相关的二元关系^(·)L∧^(+)D,^(·)L∧^(+)L,^(·)L∧^(+)R,^(+)L∧^(·)D的刻画,得到了这些二元关系是同余的充要条件,进而证明了由这些同余确定的半环类是簇。 The multiplicatively idempotent semirings satisfying the identities x+x+x=x,2x+2y=2(x+y)are studied.The characterizations of the binary relations ^(·)L∧^(+)D,^(·)L∧^(+)L,^(·)L∧^(+)R,^(+)L∧^(·)D related to the Greens relation of the multiplicative semigroups(additive semigroups)of the semirings are given,and the sufficient and necessary conditions which make these binary relations be congruences are obtained.Moreover,the classes of semirings which are determined by these congruences are proved to be semiring varieties.
作者 王俊玲 邵勇 WANG Jun-ling;SHAO Yong(School of Mathematics,Northwest University,Xi'an 710127,Shaanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2022年第6期15-22,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11971383,11801239) 陕西省自然科学基金资助项目(2020JM-425)。
关键词 半环 同余 格林关系 semiring variety congruences Green’s relations
  • 相关文献

参考文献3

二级参考文献12

  • 1K.P.Shum.The structure of superabundant semigroups[J].Science China Mathematics,2004,47(5):756-771. 被引量:12
  • 2SHUM K.P..A generalized Clifford theorem of semigroups[J].Science China Mathematics,2010,53(4):1097-1101. 被引量:6
  • 3Petrich M, Reilly N R. Completely Regular Semigroup [M]. New York: Wiley, 1999,.
  • 4Howie J M. Fundamentals of Semigroup Theory [M]. Oxford: Oxford Science Publication, 1995.
  • 5Burris S, Sankppanaver H P. A Course in Universal Algebra [M]. New York: Springer Verlag, 1981.
  • 6Pastijn F, Zhao X Z. Greents :D-relation for the multiplicative reduct of an idempotent semiring [J] Arch.Math.(Brno), 2000,36:77-93.
  • 7Zhao X Z, Shum K P, Guo Y Q. :-subvarieties of the variety of idempotent semirings [J]. Algebra Univers 2001,46:75-96.
  • 8Zhao X Z, Guo Y Q, Shum K P. -subvarieties of the variety of idempotent semirings [J]. Algebra Colloquium 2002,9:15-28.
  • 9Zhao X Z. Idempotent semirings with a commutative additive reduct [J]. Semigroup Forum, 2002,64:289-296.
  • 10Pastijn F, Zhao X Z. Varieties of idempotent semirings with commutative addition [J]. Algebra Universalis 2005,54:301-321.

共引文献15

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部