期刊文献+

基于MPI的并行大数据集生成器

A parallel large dataset generator based on MPI
下载PDF
导出
摘要 大数据处理分析算法在优化研究过程中,速度常常受限于数据集的规模。在数据集体量不足时,算法的通信时间往往要高于真正的计算时间,无法验证真实的效果。故设计实现了一个大数据集生成器,为运行在超级计算机上的并行大数据处理分析算法提供基准测试数据集。首先,使用MPI并行编程技术构造了一个并行随机数生成器,在此基础上设计实现了可控制规模及复杂性的人工数据集,主要包括:分类和聚类数据集、回归数据集、流形学习数据集和因子分解数据集等。其次,设计了大数据集生成器的I/O系统,提供MPI-I/O并行读、写数据集的接口,并设置了数据集在不同进程间的分发、映射规则,通过点对点通信实现不同节点之间的数据交互。实验结果表明,并行大数据集生成器有效提高了数据生成效率和生成规模,为并行大数据处理分析算法提供了高质量、大体量的测试数据集。 The speed of big data processing and analysis algorithms in optimization research is often limited by the size of the dataset.In the case of insufficient data volume,the communication time of the algorithm is often higher than the real calculation time,and the real effect cannot be verified.Therefore,a large dataset generator is designed to provide benchmark datasets for parallel big data processing and analysis algorithms running on supercomputers.Firstly,a parallel random number generator is constructed using MPI parallel programming technology.On this basis,artificial datasets with controllable scale and complexity are implemented which mainly includes classification and clustering datasets,regression datasets,manifold Learning datasets,factorization datasets,etc.Besides,the I/O system of the large dataset generator is designed.The system provides interfaces for MPI-I/O parallel read and write datasets.It also sets the distribution and mapping rules of the dataset between different processes and realizes the data access between different nodes through point-to-point communication.Experimental results show that the parallel large dataset generator effectively improves the efficiency and scale of data generation,and provides high-quality,large-scale test datasets for big data processing and analysis algorithms.
作者 葛旭冉 刘洋 陈志广 肖侬 GE Xu-ran;LIU Yang;CHEN Zhi-guang;XIAO Nong(College of Computer Science and Technology,National University of Defense Technology,Changsha 410073;School of Computer,Sun Yat-sen University,Guangzhou 510006,China)
出处 《计算机工程与科学》 CSCD 北大核心 2022年第7期1152-1161,共10页 Computer Engineering & Science
基金 国家重点研发计划(2018YFC1406205) 国家自然科学基金(U1811461,61872392) 广东省自然科学基金(2018B0303120) 广东省基础与应用基础研究(2019B030302002)。
关键词 MPI 大数据集生成器 I/O系统 并行大数据处理算法 算法测试 MPI large dataset generator I/O system parallel big data processing algorithm algorithm test
  • 相关文献

参考文献5

二级参考文献54

  • 1张艳红,吴勇.基于Monte Carlo方法的任意概率密度随机数字信号发生器设计 [J].电子科技,2004,17(8):45-48. 被引量:3
  • 2肖化昆.系统仿真中任意概率分布的伪随机数研究[J].计算机工程与设计,2005,26(1):168-171. 被引量:31
  • 3赵雪峰.一种伪随机数生成算法的研究与实现[J].电脑学习,2005(6):25-26. 被引量:5
  • 4张淑梅,李勇.计算机产生随机数的方法[J].数学通报,2006,45(3):44-45. 被引量:11
  • 5Zaharia M, et al. Resilient distributed datasets: A fault- tolerant abstraction for in-memory cluster computing// Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. San Jose, USA, 2012 : 2-2.
  • 6Low Y, Bickson D, Gonzalez J, et al. Distributed GraphLab: A framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment, 2012, 5(8): 716-727.
  • 7Graham-Rowe D, Goldston D, Doctorow C, et al. Big data: Science in the petabyte era. Nature, 2008, 455(7209): 8-9.
  • 8Ghazal A, Rabl T, Hu M, et al. BigBench: Towards an industry standard benchmark for big data analytics//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York, USA, 2013 : 1197-1208.
  • 9Huang S, Huang J, Dai J Q, et al. The HiBench benchmark suite : Characterization of the MapReduce-based data analysis //Proceedings of the ICDE Workshops on Information Software as Services. LongBeaeh, USA, 2010:41-51.
  • 10Pavlo A, Paulson E, Rasin A, eta]. A comparison of approaches to farge-scale data analysis//Proceedings of the2009 ACM SIGMOD International Conference on Management of Data. Providence, USA, 2009:165-178.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部