期刊文献+

基于博弈论优化的高效联邦学习方案 被引量:6

Efficient Federated Learning Scheme Based on Game Theory Optimization
下载PDF
导出
摘要 随着网络信息技术与互联网的发展,数据的隐私与安全问题亟待解决,联邦学习作为一种新型的分布式隐私保护机器学习技术应运而生。针对在联邦学习过程中存在个人数据信息泄露的隐私安全问题,结合Micali-Rabin随机向量表示技术,基于博弈论提出一种具有隐私保护的高效联邦学习方案。根据博弈论激励机制,构建联邦学习博弈模型,通过设置合适的效用函数和激励机制保证参与者的合理行为偏好,同时结合Micali-Rabin随机向量表示技术设计高效联邦学习方案。基于Pedersen承诺机制实现高效联邦学习的隐私保护,以保证联邦学习各参与者的利益和数据隐私,并且全局达到帕累托最优状态。在数字分类数据集上的实验结果表明,该方案不仅提高联邦学习的通信效率,而且在通信开销和数据精确度之间实现平衡。 With the continuous development of network information technology and Internet technology,data privacy and security issues need to be addressed urgently.Federated learning has emerged as a new distributed privacy protection machine learning framework.This study proposes an efficient federated learning scheme with privacy protection based on game theory and Micali-Rabin random vector representation technology to address privacy and security issues,such as personal data information leakage in the federated learning process.It uses game theory to design a federated learning game theory model,sets appropriate utility functions and incentive mechanisms to ensure participants’reasonable behavioral preferences,and combines Micali-Rabin random vector representation technology to construct an efficient federated learning scheme.Furthermore,it integrates the Pedersen commitment mechanism to realize the privacy protection of efficient federated learning to ensure the security and privacy of each participant in the federated learning and the interests of each participant,and global achieve Pareto optimal state.The experimental result on the digital classification data set shows that the scheme not only improves the communication efficiency of federated learning but also achieves a balance between communication overhead and data accuracy.
作者 周全兴 李秋贤 丁红发 樊玫玫 ZHOU Quanxing;LI Qiuxian;DING Hongfa;FAN Meimei(School of Big Data Engineering,Kaili University,Kaili,Guizhou 556011,China;School of Information,Guizhou University of Finance and Economics,Guiyang 550025,China;School of Mathematics and Statistics,Guizhou University,Guiyang 550025,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第8期144-151,159,共9页 Computer Engineering
基金 国家自然科学基金(61772008,62002080) 贵州省教育厅自然科学研究项目(黔教合KY字[2020179],[2020180],[2021140]) 凯里学院做特市(州)高校专项计划项目“基于区块链的黔东南从江香猪溯源体系博弈演化技术研究” 贵州省科技重大专项计划(20183001) 贵州财经大学校级科研课题(2020XYB02)。
关键词 联邦学习 博弈论 帕累托最优 隐私保护 Micali-Rabin随机向量表示技术 federated learning game theory Pareto optimality privacy protection Micali-Rabin random vector representation technology
  • 相关文献

参考文献3

二级参考文献13

  • 1Halpem J, Teague V. Rational secret sharing and multiparty computation: extended abstract [ A ]. Proceedings of the 36th Annual ACM Symposium on Theory of Computing[ C]. New York, USA: ACM,2004.623 - 632.
  • 2Abraham I,Dolev D, Gonen R, Halpem J. Distributed comput- ing meets game theory:Robust mechanisms for rational secret sharing and multiparty computation [ A ]. Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Compufing[ C] .New York, USA: ACM,2006.53 - 62.
  • 3Lysyanskaya A, Triandopoulos N. Rationality and adversarial behaviour in multi-party computation (extended abstract )[ A]. CRYPIO2006[ C] .Heidelberg: Springer,2006.180 - 197.
  • 4Maleka S, Amjed S, Pandu Rangan C. Rational secret sharing with repeated games [ A ]. ISPEC2008 [ C ]. Heidelberg: Springer, 2008. 334 - 346.
  • 5Asharov G, Lindell Y. Utility dependence in correct and fair ra- tional secret sharing [ A ]. CRYtrIO2009 [ C ]. Heidelberg: Springer, 2009.559 - 576.
  • 6Osborne M.An Introduction to Game Theory[M]. Oxfor: Ox- ford University Press,2004.
  • 7陈晶,杜瑞颖,王丽娜,田在荣.网络环境下一种基于概率密度的信任博弈模型[J].电子学报,2010,38(2):427-433. 被引量:14
  • 8田有亮,马建峰,彭长根,姬文江.秘密共享体制的博弈论分析[J].电子学报,2011,39(12):2790-2795. 被引量:26
  • 9王艳华,孙成启,高洋,刘亚秋.一种基于博弈理论的无线传感器网络自私节点惩罚机制[J].安徽农业科学,2014,42(20):6866-6868. 被引量:1
  • 10张诗悦,吴建德,王晓东,范玉刚,冷婷婷.一种能耗均衡的无线传感器网络分簇路由算法[J].计算机工程,2014,40(8):6-9. 被引量:11

共引文献34

同被引文献37

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部