摘要
为改善TC4钛合金(Ti-6A1-4V)表面力学性能和抗磨损性能,利用多弧离子镀技术在其表面沉积制备Cr层与CrAlN层交替(1、5和10个循环周期)沉积的Cr/CrAlN多层涂层。采用扫描电镜(SEM)、X射线衍射(XRD)、轮廓仪、洛氏压痕仪、显微硬度计、球盘摩擦磨损等对涂层的微观结构和性能进行研究。结果表明:Cr/CrAlN-1涂层的主要物相为固溶的(Al,Cr)N相,而Cr/CrAlN-5和Cr/CrAlN-10多层涂层的主要物相为固溶的(Al,Cr)N相和Cr相。随着循环周期的增加,(Al,Cr)N相的优先生长方向由(111)晶面转变为(200)晶面,同时涂层的晶粒尺寸减小。金属Cr层的加入和多层结构可以显著增加Cr/CrAlN多层涂层的膜-基结合强度。此外,Cr/CrAlN涂层显著提升了钛合金基体的硬度和耐磨性能,其中Cr/CrAlN-1的显微硬度(2465HK_(0.025))最高,而Cr/CrAlN-5的磨损率(1.52×10^(-6)mm^(3)·N^(-1)·m^(-1))最低,Cr/CrAlN多层涂层的磨损失效机理主要为氧化磨损。
In order to improve the surface mechanical properties and wear performance of TC4 alloys(Ti-6A1-4V),Cr/CrAlN coatings with different multilayer structures(1,5,10)were deposited on the surface of the titanium alloy by multi-arc ion plating technology.Scanning electron microscopy(SEM),X-ray diffraction(XRD),profilometer,Rockwell indentation tester,micro-hardness tester and ball-on-disc tri-bometer were used to study the microstructure and properties of Cr/CrAlN multilayer coatings.As the results shown,the main phase of the Cr/CrAlN-1 coating was the(Al,Cr)N phase,while these of the Cr/CrAlN-5 and Cr/CrAlN-10 multilayer coatings were the(Al,Cr)N and Cr phases.With the increase of cycling layer structure,the preferred growth orientation of the(Al,Cr)N phase changed from(111)plane to(200)plane,and the grain size of Cr/CrAlN multilayer coatings also decreased.Addition of metal Cr layers and mutilayer structures can improve the adhesion of Cr/CrAlN multilayer coatings to the TC4 alloy substrate.Cr/CrAlN multilayer coatings significantly increase the hardness and wear resistance of the titanium alloy,and the Cr/CrAlN-1 coating shows the highest micro-hardness of 2465HK_(0.025),while the Cr/CrAlN-5 coating shows the lowest wear rate of 1.52×10^(-6)mm^(3)·N^(-1)·m^(-1).The main wear failure mechanism of Cr/CrAlN multilayer coatings was oxidation wear.
作者
张向东
蔡习军
蔡飞
张世宏
陈利
ZHANG Xiangdong;CAI Xijun;CAI Fei;ZHANG Shihong;CHEN Li(State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China;Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Education,Anhui University of Technology,Maanshan 243000,Anhui,China;Research Center of Modern Surface and Interface Engineering,Anhui University of Technology,Maanshan 243000,Anhui,China;School of Material Science and Engineering,Anhui University of Technology,Maanshan 243000,Anhui,China)
出处
《材料导报》
EI
CAS
CSCD
北大核心
2022年第15期123-128,共6页
Materials Reports
基金
安徽省自然科学基金(1808085QE131)
清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF18B13)
国家自然科学基金(51775560,51305002,51522502)。