期刊文献+

Spectral imaging with deep learning 被引量:3

原文传递
导出
摘要 The goal of spectral imaging is to capture the spectral signature of a target.Traditional scanning method for spectral imaging suffers from large system volume and low image acquisition speed for large scenes.In contrast,computational spectral imaging methods have resorted to computation power for reduced system volume,but still endure long computation time for iterative spectral reconstructions.Recently,deep learning techniques are introduced into computational spectral imaging,witnessing fast reconstruction speed,great reconstruction quality,and the potential to drastically reduce the system volume.In this article,we review state-of-the-art deep-learning-empowered computational spectral imaging methods.They are further divided into amplitude-coded,phase-coded,and wavelength-coded methods,based on different light properties used for encoding.To boost future researches,we've also organized publicly available spectral datasets.
出处 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第6期1040-1058,共19页 光(科学与应用)(英文版)
基金 This work was funded by"Leading Goose"Research and Development Program of Zhejiang(2022C01077) National Key Research and Development Program of China(2018YFA0701400) National Natural Science Foundation of China(92050115) Zhejiang Provincial Natural Science Foundation of China(LZ21F050003).
关键词 RESORT SIGNATURE BOOST
  • 相关文献

参考文献2

二级参考文献2

共引文献18

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部