期刊文献+

用于预测轴流压气机内角区分离的RANS和SBES方法评估

Assessment of RANS and SBES Methods for Prediction of Corner Separation in Axial Flow Compressors
下载PDF
导出
摘要 为了提高压气机内角区分离的RANS建模精度,基于剪应力输运模型(SST模型),本文评估了湍流非平衡和各向异性修正对压气机角区分离预测的影响。结果表明,角区分离区上游端壁二次流以及角区分离流均呈现出很强的湍流非平衡和各向异性行为,结合非平衡和各向异性修正而提出的NSST-Helicity-QCR模型能够在各类工况下给出最为准确的角区分离预测结果。为了进一步验证提出的NSST-Helicity-QCR模型能够合理捕捉压气机端区流动物理,基于一种新型混合RANS-LES方法——应力融合涡模拟(SBES)构建的高保真时间精确湍流数据库,本文对NSST-Helicity-QCR模型进行评估反馈。结果表明,NSST-Helicity-QCR模型合理捕捉了端壁二次流以及角区分离流的湍流非平衡行为,但仍低估了角区分离区内的湍流各向异性行为。 To improve the RANS modelling accuracy of corner separation in compressors,based on theShear Stress Transport model(SST model),the impact of the non-equilibrium and anisotropic modifications onthe compressor corner separation prediction is evaluated.The results show that both the endwall secondary flowupstream of the corner separation region and the corner separation flow exhibit strong turbulence non-equilibriumand anisotropic behaviors.The NSST-Helicity-QCR model,which combines the turbulence non-equilibrium andanisotropic modifications,gives the most accurate corner separation prediction results under various operatingconditions.To demonstrate that the proposed NSST-Helicity-QCR model reasonably captures the compressorendwall flow physics,based on a high fidelity time-accurate turbulence database constructed by a newly devel-oped hybrid RANS-LES method,Stress-Blended Eddy Simulation(SBES),the NSST-Helicity-QCR model isevaluated.The results show that NSST-Helicity-QCR model reasonably captures the turbulence non-equilibriumin the endwall secondary flow and corner separation flow,but still underestimates the strength of turbulence an-isotropy within the corner separation region.
作者 孙巍 SUN Wei(AECC Compressor Research Center,Aero Engine Academy of China,Beijing 101304,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2022年第7期189-205,共17页 Journal of Propulsion Technology
关键词 压气机 角区分离 雷诺平均 湍流 剪应力输运模型 非平衡 各向异性 应力融合涡模拟 Compressor Corner separation RANS Turbulence SST model Non-equilibrium Anisotropy Stress-blended eddy simulation
  • 相关文献

参考文献1

二级参考文献17

  • 1Wisler D C. Loss reduction in axial flow compressors through low-speed model testing. Journal of Engineering for Gas Turbines and Power 1985; 107(2): 354-363.
  • 2Cumpsty N A, Greitzer E M. Ideas and methods of turbomachinery aerodynamics: a historical view. Journal of Propulsion and Power 2004; 20(1): 15-26.
  • 3Joslyn H D, Dring R E Axial compressor stator aerodynamics. Journal of Engineering for Gas Turbines and Power 1985; 107(2): 485-492.
  • 4Schulz H D, Gallus H D. Experimental investigations of the three-dimensional flow in an annular compressor cascade. Journal of Turbornachinery 1988; 110(4): 467-478.
  • 5Schulz H D, Gallus H E, Lakshminarayana B. Threedimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: part luasi-steady flow field and comparison with steady-state data. Journal of Turbomachinery 1990; 112(4): 669-678.
  • 6Schulz H D, Gallus H E, Lakshminarayana B. Threedimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: part 2--unsteady flow and pressure field. Journal of Turbomachinery 1990; 112(4): 679-688.
  • 7Gbadebo S A, Cumpsty N A, Hynes T E Three-dimensional separations in axial compressors. Journal of Turbomachinery 2005; 127(2): 331-339.
  • 8Lei V M, Spalkovszky Z SI Greitzer E M. A criterion for axial compressor hub-comer stall. Journal of Turbomachinery 2008; 130(3): 031006-1-10.
  • 9Denton J D. Lessons from rotor 37. Journal of Thermal Science 1997; 6(1): 1-13.
  • 10Sagaut E Large eddy simulation for incompressible flows: an introduction. New York: Springer, 2001.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部