期刊文献+

不协调区间值决策系统中的α-上、下近似约简 被引量:1

α-lower and upper approximation reductions in inconsistent interval-valued decision systems
原文传递
导出
摘要 研究了不协调区间值决策系统中基于α-容差关系的属性约简问题。针对一种常用的α-容差关系,给出了保持全部决策类的下近似不变的α-下近似约简和保持全部决策类的上近似不变的α-上近似约简的定义,证明了α-上近似约简与已有的α-广义决策约简和α-不确定性保持约简的等价性,以及α-下近似约简与已有的α-确定性保持约简的等价性。讨论了α-上近似约简和α-下近似约简之间的关系,并用例子加以验证。 The focus is on the attribute reductions of inconsistent interval-valued decision systems based on α-tolerance relation. With respect to one kind of α-tolerance relations in inconsistent interval-valued decision systems, notions of α-lower and upper approximate reductions are defined, which keep the lower and upper approximations of all the decision classes unchanged, respectively. Subsequently, the equivalences among the α-upper approximate reduction and α-generalized decision reduction, α-uncertainty maintained reduction, and between α-lower approximate reduction and α-certainty maintained reduction are proved. Meanwhile, the relationships between α-lower approximate reduction and α-upper approximate reduction are discussed in detail, and verified by some examples.
作者 张晓雨 李同军 ZHANG Xiao-yu;LI Tong-jun(School of Information Engineering,Zhejiang Ocean University,Zhoushan 316022,Zhejiang,China;Key Laboratory of Oceanographic Big Data Mining&Application of Zhejiang Province,Zhoushan 316022,Zhejiang,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2022年第5期20-27,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61773349,61573321,61976194,41631179)。
关键词 粗糙集 不协调区间值决策系统 α-容差关系 α-上近似约简 α-下近似约简 rough set inconsistent interval-valued decision system α-tolerance relation α-upper approximate reduction α-lower approximate reduction
  • 相关文献

参考文献9

二级参考文献47

  • 1徐伟华,张文修.基于优势关系下的协调近似空间[J].计算机科学,2005,32(9):164-165. 被引量:28
  • 2徐伟华,张文修.基于优势关系下不协调目标信息系统的知识约简[J].计算机科学,2006,33(2):182-184. 被引量:43
  • 3王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 4邓大勇,黄厚宽,李向军.不一致决策系统中约简之间的比较[J].电子学报,2007,35(2):252-255. 被引量:28
  • 5Pawlak Z.Rough sets[J].Communication of the ACM,1995,38(1): 89-95.
  • 6Kryszkiewicz M.Comparative studies of alternative of knowledge reduction in inconsistent systems [J].Intelligent Systems,2001,!6(1): 105-120.
  • 7Grecos M B,Slowinski R.Rough approximation of preference relation by dominance relations[J].European Journal of Operational Research, 1999,117 : 63-68.
  • 8Shao M W,Zhang W X.Dominance relation and rules in an incomplete ordered information system[J].International Journal of Intelligent Systems, 2005,20:13-27
  • 9Xu W H,Zhang W X.Methods for knowledge reduction in inconsistent ordered information systems[J].Journal of Applied Mathematics & Computing, 2008,26(1/2) : 313-323.
  • 10Pawlak Z.Rough sets:Theoretical aspects of reasoning about data[M]. Boston:Kluwer Academic Publishers,1991.

共引文献238

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部