摘要
本文提出一种基于张量与姿态回归网络的多人姿态估计方法。所提出的方法与以往基于噪声和不完整姿态的交叉视觉估计法有所不同,所提出多视角二维图像像素处理可以直接在三维空间上处理数据,从而避免了每个视角姿态的错误判定。本文方法包括张量网络和姿态回归网络,两个网络的组合可以更精确地估计出多视角相应的三维姿态。本文方法对于解决姿态的遮挡估计和歧义问题具有很强的稳定性,经过一些常用实验数据集测试,其比前期的一些方法具有更强性能。
A new multi-person pose estimation method based on a tensor and pose regression network is proposed in this ar⁃ticle.The proposed method is different from the previous cross-visual estimation methods which are based on noise and incomplete pose.The multi-view 2D image pixel processing in the proposed method can directly process the data in the 3D space,thus the wrong determination of each view can be avoided.The proposed method is including tensor network and pose regression network,and the combination of the two networks can more accurately estimate the corresponding 3D pose from multi-view images.The pro⁃posed method has strong stability to overcome occlusion and ambiguity for the estimation of 3D poses.After the testing by some re⁃leased datasets,the experimental results are verifying that the proposed method has the better performance than some previous methods.
作者
黄靖敏
李万益
林浩翔
杨康明
冯风炎
郭泽佳
Huang Jingmin;Li Wanyi;Lin Haoxiang;Yang Kangming;Feng Fengyan;Guo Zejia(School of Computer Science,Guangdong University of Education,Guangzhou 510303)
出处
《现代计算机》
2022年第11期74-79,111,共7页
Modern Computer
基金
广东省级大学生创新创业训练计划项目(S202214278039)
国家级大学生创新创业训练计划项目(202114278009X)
广州市基础与应用基础研究项目(202002030232)
广东省普通高校青年创新人才项目(2019KQNCX095)
广东省高等学校教学质量与教学改革工程项目(广东第二师范学院计算机实验教学示范中心,2019年,No.18)
广东第二师范学院网络工程重点学科(ZD2017004)。
关键词
姿态
多视角
张量
网络
pose
multi-view
tensor
network