期刊文献+

Validation and error analysis of wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean

下载PDF
导出
摘要 By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are the combination of classical Ekman current from the cross-calibrated multi-platform(CCMP)wind speed,geostrophic current from the mean absolute dynamic topography(MADT),and wave-induced current based on the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim Re-Analysis(ERA-Interim)surface wave datasets.Weight functions are introduced in the Ekman current formulation as well.Comparisons with in-situ data from Lagrangian drifters in the study area and Kuroshio Extension Observatory(KEO)observations at 32.3°N,144.6°E,and 15-m depth indicate that wave-modifi ed ocean surface currents provide accurate time means of zonal and meridional currents in the northwestern Pacifi c Ocean.Result shows that the wave-modifi ed currents are quite consistent with the Lagrangian drifter observations for the period 1993-2017 in the deep ocean.The correlation(root mean square error,RMSE)is 0.96(1.45 cm/s)for the zonal component and 0.90(1.07 cm/s)for the meridional component.However,wave-modifi ed currents underestimate the Lagrangian drifter velocity in strong current and some off shore regions,especially in the regions along the Japan coast and the southeastern Mindanao.What’s more,the wave-modifi ed currents overestimate the pure Eulerian KEO current which does not consider the impact of waves,and the zonal(meridional)correlation and RMSE are 0.95(0.90)and 11.25 cm/s(12.05 cm/s)respectively.These comparisons demonstrate that our wave-modifi ed ocean surface currents have high precision and can describe the real-world ocean in the northwestern Pacifi c Ocean accurately and intuitively,which can provide important routes to calculate ocean surface currents on large spatial scales.
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1289-1303,共15页 海洋湖沼学报(英文)
基金 Supported by the National Natural Science Foundation of China(No.42106034) the Laboratory for Regional Oceanography and Numerical Modeling,Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2019A02) the Basic Scientifi c Fund for National Public Research Institutes of China(No.2020Q05) the National Natural Science Foundation of China(Nos.41706034,41706225,41906003)。
  • 相关文献

参考文献2

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部