摘要
By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are the combination of classical Ekman current from the cross-calibrated multi-platform(CCMP)wind speed,geostrophic current from the mean absolute dynamic topography(MADT),and wave-induced current based on the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim Re-Analysis(ERA-Interim)surface wave datasets.Weight functions are introduced in the Ekman current formulation as well.Comparisons with in-situ data from Lagrangian drifters in the study area and Kuroshio Extension Observatory(KEO)observations at 32.3°N,144.6°E,and 15-m depth indicate that wave-modifi ed ocean surface currents provide accurate time means of zonal and meridional currents in the northwestern Pacifi c Ocean.Result shows that the wave-modifi ed currents are quite consistent with the Lagrangian drifter observations for the period 1993-2017 in the deep ocean.The correlation(root mean square error,RMSE)is 0.96(1.45 cm/s)for the zonal component and 0.90(1.07 cm/s)for the meridional component.However,wave-modifi ed currents underestimate the Lagrangian drifter velocity in strong current and some off shore regions,especially in the regions along the Japan coast and the southeastern Mindanao.What’s more,the wave-modifi ed currents overestimate the pure Eulerian KEO current which does not consider the impact of waves,and the zonal(meridional)correlation and RMSE are 0.95(0.90)and 11.25 cm/s(12.05 cm/s)respectively.These comparisons demonstrate that our wave-modifi ed ocean surface currents have high precision and can describe the real-world ocean in the northwestern Pacifi c Ocean accurately and intuitively,which can provide important routes to calculate ocean surface currents on large spatial scales.
基金
Supported by the National Natural Science Foundation of China(No.42106034)
the Laboratory for Regional Oceanography and Numerical Modeling,Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2019A02)
the Basic Scientifi c Fund for National Public Research Institutes of China(No.2020Q05)
the National Natural Science Foundation of China(Nos.41706034,41706225,41906003)。