期刊文献+

基于WIFI信息熵特征分析的室内人员行为监测技术 被引量:1

Indoor Personnel Behavior Monitoring Technology Based on WIFI Information Entropy Feature Analysis
原文传递
导出
摘要 现有的室内监控技术存在一些限制,例如盲区和高成本.相反,无线传感技术因其非视距和被动式的优点受到广泛研究.现有的基于无线信号的检测方法大多采用信号强度和信道状态信息(CSI)的测量值.然而,实验证明从同一设备接收的信号随不同天线有差异.计算出不同天线间相位差时频图的熵值可以作为有效特征提高检测率.利用无线设备在3种常见室内环境中采集的数据提取相位差特征,并与现有的特征提取方法进行比较.同时选取支持向量机(SVM)和神经网络分类方法对比.结果表明,该方法具有较高的准确性和鲁棒性. There are some limitations among existing indoor monitoring technologies,such as blind areas and high costs.On the contrary,wireless sensing technology has been widely researched for its nonline of sight and passive.The existing detection methods based on wireless signals mostly adopt the measured values of signal strength and channel state information(CSI).However,the experiment proves that signals received from the same device vary with different antennas.The calculated entropy value of the phase difference of the time-frequency map between different antennas can be used as effective feature to improve the detection accuracy.The phase difference features extracted from the data collected through the wireless devices in three common indoor environments were used to make a comparison with existing feature extraction methods.Meanwhile Support Vector Machine(SVM)and neural network classification methods were selected for comparison.The results show that the accuracy and robustness are higher.
作者 杜宇锋 王春东 杨文军 张炜宁 汪卓越 Du Yufeng;Wang Chundong;Yang Wenjun;Zhang Weining;Wang Zhuoyue(Key Laboratory of Computer Vision and System,Ministry of Education,Tianjin 300384,China;Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,Tianjin 300384,China;National Engineering Laboratory for Computer Virus Prevention and Control Technology,Tianjin 300384,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第3期29-34,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家自然基金(U1536122) 天津市科委面上项目(15JCYBJC15600) 天津市科委重大专项(15ZXDSGX00030)。
关键词 无线感知 室内安防 信道状态信息 信息熵 wireless sensing indoor security channel state information information entropy
  • 相关文献

参考文献2

二级参考文献11

  • 1陈行勇,黎湘,郭桂蓉,姜斌.微进动弹道导弹目标雷达特征提取[J].电子与信息学报,2006,28(4):643-646. 被引量:61
  • 2Chen V C, Li F, and Ho S S, et al.. Analysis of micro-Doppler signatures[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4): 271-276.
  • 3Chen V C. Micro-Doppler effect of micro-motion dynamics: A review[C]. Proceedings of SPIE on Independent Component Analyses, Wavelets, and Neural Networks, Orlando, USA, 2003, 5102: 240-249.
  • 4Chen V C, Li F Y, and Ho S S. Micro-Doppler effect in radar phenomenon, model and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 420): 2-21.
  • 5Sun Hui-xia and Liu zheng. Micro-Doppler feature extraction for ballistic missile warhead[C]. IEEE International Conference on Information and Automation. Zhangjiajie, China, 2008: 1333-1336.
  • 6Lei Jia-jin. Pattern recognition based on time-frequency distributions of radar micro-Doppler dynamics[C]. IEEE Proceedings of the Sixth International Conference on SNPD/ SAWN, Washington DC, USA, 2005: 14-18.
  • 7Sun Zhao-qing, Li Bao-zhu, and Lu Yao-bing. Research on mocro-motion and micro-Doppler of ballistic targets[C]. IET International Radar Conference, Guilin, China, 2009, 209.
  • 8高红卫,谢良贵,文树梁,匡勇.弹道导弹目标微多普勒特征提取[J].雷达科学与技术,2008,6(2):96-101. 被引量:15
  • 9刘志成,何佳洲.多普勒频谱及JEM效应在空中目标识别中的应用分析[J].指挥控制与仿真,2009,31(1):38-41. 被引量:5
  • 10崔瑞,薛磊.基于图像熵的逆合成孔径雷达干扰效果评估方法[J].现代防御技术,2009,37(1):94-97. 被引量:2

共引文献26

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部