期刊文献+

灰色关联与麻雀优化算法预测光伏发电量研究 被引量:5

Research on prediction of photovoltaic power generation by grey correlation and sparrow optimization algorithm
下载PDF
导出
摘要 为了提高建筑屋顶小型分布式光伏电站并网可靠性,依据8.16 kW屋顶光伏电站2016―2021年1744 d的实际运行数据,并利用公开的天气资料,开展发电量预测研究。研究首先基于聚类划分天气数据,采用灰色关联法分析太阳辐射、温度、相对湿度等气象因素与光伏发电量的相关性;接着采用麻雀搜索算法优化预测模型,并与常规及采用粒子群优化的模型进行了对比。研究结果表明麻雀优化算法可有效提高预测精度,有助于电网提前安排调度,减少电网冲击。 In order to improve the grid-connected reliability of the small distributed photovoltaic power station on the roof of the building,the research on the prediction of power generation was carried out based on the actual operation data of 1744 d from 2016 to 2021 of the 8.16 kW roof photovoltaic power station and the public weather data was used.Firstly,the weather data were divided based on clustering,and the grey correlation method was used to analyze the correlation between meteorological factors such as irradiance,temperature,relative humidity and photovoltaic power generation,then sparrow search algorithm was used to optimize the prediction model,and compared with conventional and particle swarm optimization models.The research results show that the sparrow optimization algorithm can effectively improve the prediction accuracy,help to schedule the power grid in advance and reduce the impact of the power grid.
作者 成珂 张璐 杨力人 劳志军 CHENG Ke;ZHANG Lu;YANG Liren;LAO Zhijun(Northwestern Polytechnical University,Xi’an Shaanxi 710072,China;Xi'an Bowei New Energy Technology Co.,Ltd.,Xi’an Shaanxi 710000,China)
出处 《电源技术》 CAS 北大核心 2022年第7期797-801,共5页 Chinese Journal of Power Sources
基金 陕西省科学技术研究发展计划(2015XT-07)。
关键词 光伏发电 天气聚类 灰色关联 麻雀搜索算法 photovoltaic power generation weather clustering grey correlation sparrow search algorithm
  • 相关文献

参考文献3

二级参考文献37

  • 1祝暄懿,姚李孝.基于相似日和小波神经网络的光伏短期功率预测[J].电网与清洁能源,2019,35(3):75-78. 被引量:18
  • 2Shi lie, Lee Weijei, Liu Yongqian, et al. Forecasting power output of photovoltaic systems based on weather classification and support vector machines[J]. IEEE Transactions on Industry Applications, 2012, 48(3): 1064-1069.
  • 3Selmin Ener Rusen, Annette Hammer, Akinoglu B G. Coupling satellite images with surface measurements of bright sunshine hours to estimate daily solar irradiation on horizontal surface[J]. Renewable Energy, 2013, 55(7): 212-219.
  • 4Ricardo Marquez, Hugo T.C. Pedro, Carlos F.M. Coimbra. Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputstoANNs[J]. Solar Energy, 2013, 92(6): 176-188.
  • 5Liu Yongqian, Shi Jie, Yang Yongping, et al. Short-term wind-power prediction based on wavelet transform-support vector maehine and statistic characteristics analysis[J]. IEEE Transactions on Industry Applications, 2012, 48(4): 1136-1141.
  • 6Cyril Voyant, Marc Muselli, Christophe Paoli, et al. Hybrid methodology for hourly global radiation forecasting in Mediterranean area[J]. Renewable Energy, 2013, 53(5): 1-11.
  • 7Hartman E J, Keeler J D, Kowalski J M. Layered neural networks with Gaussian hidden units as universal approximations[J]. Neural Computation, 1990, 2(2): 210-215.
  • 8Alfredo Femandez-Jimenez L, Alberto Falces, Montserrat Mendoza- Villena, et al. Short-term power forecasting system for photovoltaic plants[J]. Renewable Energy, 2012, 44(8): 311-317.
  • 9Ying Chen, Luh Peter B, Friedland Peter B, et al. Short-term load forecasting: similar day-based wavelet neural networks[J]. IEEE Transactions onPowerSystems, 2010, 25(1): 322-330.
  • 10李光明,廖华,李景天,赵恒利,黄波,何京鸿.并网光伏发电系统发电量预测方法的探讨[J].云南师范大学学报(自然科学版),2011,31(2):33-38. 被引量:21

共引文献128

同被引文献48

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部