期刊文献+

Review of Unsupervised Person Re-Identification 被引量:2

下载PDF
导出
摘要 Person re-identification(re-ID)aims to match images of the same pedestrian across different cameras.It plays an important role in the field of security and surveillance.Although it has been studied for many years,it is still considered as an unsolved problem.Since the rise of deep learning,the accuracy of supervised person re-ID on public datasets has reached the highest level.However,these methods are difficult to apply to real-life scenarios because a large number of labeled training data is required in this situation.Pedestrian identity labeling,especially cross-camera pedestrian identity labeling,is heavy and expensive.Why we cannot apply the pre-trained model directly to the unseen camera network?Due to the existence of domain bias between source and target environment,the accuracy on target dataset is always low.For example,the model trained on the mall needs to adapt to the new environment of airport obviously.Recently,some researches have been proposed to solve this problem,including clustering-based methods,GAN-based methods,co-training methods and unsupervised domain adaptation methods.
出处 《Journal of New Media》 2021年第4期129-136,共8页 新媒体杂志(英文)
  • 相关文献

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部