期刊文献+

Improved Prediction and Understanding of Glass-Forming Ability Based on Random Forest Algorithm 被引量:1

下载PDF
导出
摘要 As an ideal material,bulk metallic glass(MG)has a wide range of applications because of its unique properties such as structural,functional and biomedical materials.However,it is difficult to predict the glass-forming ability(GFA)even given the criteria in theory and this problem greatly limits the application of bulk MG in industrial field.In this work,the proposed model uses the random forest classification method which is one of machine learning methods to solve the GFA prediction for binary metallic alloys.Compared with the previous SVM algorithm models of all features combinations,this new model is successfully constructed based on the random forest classification method with a new combination of features and it obtains better prediction results.Simultaneously,it further shows the degree of feature parameters influence on GFA.Finally,a normalized evaluation indicator of binary alloy for machine learning model performance is put forward for the first time.The result shows that the application of machine learning in MGs is valuable.
出处 《Journal of Quantum Computing》 2021年第2期79-87,共9页 量子计算杂志(英文)
基金 supported by the National Key R&D Program of China,Grant No.2018YFA0306703.
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部