期刊文献+

Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations 被引量:1

下载PDF
导出
摘要 In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.
出处 《Communications on Applied Mathematics and Computation》 2022年第1期353-379,共27页 应用数学与计算数学学报(英文)
基金 Jie Du is supported by the National Natural Science Foundation of China under Grant Number NSFC 11801302 Tsinghua University Initiative Scientific Research Program Eric Chung is supported by Hong Kong RGC General Research Fund(Projects 14304217 and 14302018) The third author is supported by the NSF grant DMS-1818467.
  • 相关文献

参考文献2

二级参考文献36

  • 1D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marin, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39:5 (2002), 1749-1779.
  • 2F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Russo and E. Siili, A priori error analysis of residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), 1933-1948.
  • 3F. Brezzi, L.D. Marini and E. Suli, Residual-free bubbles for advection-diffusion problems:the general error analysis, Numer. Math., 85 (2000), 31-47.
  • 4P. Castillo, B. Cockburn, D. Schotzau and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comput., 71:238 (2002), 455-478.
  • 5F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comput., 76:257 (2007), 67-96.
  • 6B. Cockburn and B. Dong, An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems, J. Sci. Comput, 32:2 (2007), 233-262.
  • 7B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35:6 (1998), 2440-2463.
  • 8E.C. Gartland, An analysis of a uniformly convergent finite difference/finite element scheme for a model singular-perturbation problem, Math. Comput., 51:183 (1988), 93-106.
  • 9W. Guo and M. Stynes, Finite element analysis of exponentially fitted lumped schemes for time- dependent convection-diffusion problems, Numer. Math., 66 (1993), 347-371.
  • 10W. Guo and M. Stynes, Finite element analysis of an exponentially fitted non-lumped scheme for advection-diffusion equations, Appl. Numer. Math., 15 (1994), 357-393.

共引文献15

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部