摘要
Graph filtering is an important part of graph signal processing and a useful tool for image denoising.Existing graph filtering methods,such as adaptive weighted graph filtering(AWGF),focus on coefficient shrinkage strategies in a graph-frequency domain.However,they seldom consider the image attributes in their graph-filtering procedure.Consequently,the denoising performance of graph filtering is barely comparable with that of other state-of-the-art denoising methods.To fully exploit the image attributes,we propose a guided intra-patch smoothing AWGF(AWGF-GPS)method for single-image denoising.Unlike AWGF,which employs graph topology on patches,AWGF-GPS learns the topology of superpixels by introducing the pixel smoothing attribute of a patch.This operation forces the restored pixels to smoothly evolve in local areas,where both intra-and inter-patch relationships of the image are utilized during patch restoration.Meanwhile,a guided-patch regularizer is incorporated into AWGF-GPS.The guided patch is obtained in advance using a maximum-a-posteriori probability estimator.Because the guided patch is considered as a sketch of a denoised patch,AWGF-GPS can effectively supervise patch restoration during graph filtering to increase the reliability of the denoised patch.Experiments demonstrate that the AWGF-GPS method suitably rebuilds denoising images.It outperforms most state-of-the-art single-image denoising methods and is competitive with certain deep-learning methods.In particular,it has the advantage of managing images with significant noise.
基金
This work is supported by Natural Science Foundation of Jiangsu Province,China[BK20170306]
National Key R&D Program,China[2017YFC0306100].The initials of authors who received these grants are YZ and JL,respectively.It is also supported by Fundamental Research Funds for Central Universities,China[B200202217]
Changzhou Science and Technology Program,China[CJ20200065].The initials of author who received these grants are YT.