期刊文献+

A New BEM Modeling Algorithm for Size-Dependent Thermopiezoelectric Problems in Smart Nanostructures

下载PDF
导出
摘要 The main objective of this paper is to introduce a new theory called size-dependent thermopiezoelectricity for smart nanostructures.The proposed theory includes the combination of thermoelastic and piezoelectric influences which enable us to describe the deformation and mechanical behaviors of smart nanostructures subjected to thermal,and piezoelectric loadings.Because of difficulty of experimental research problems associated with the proposed theory.Therefore,we propose a new boundary element method(BEM)formulation and algorithm for the solution of such problems,which involve temperatures,normal heat fluxes,displacements,couple-tractions,rotations,force-tractions,electric displacement,and normal electric displacement as primary variables within the BEM formulation.The computational performance of the proposed methodology has been demonstrated by using the generalized modified shift-splitting(GMSS)iteration method to solve the linear systems resulting from the BEM discretization.GMSS advantages are investigated and compared with other iterative methods.The numerical results are depicted graphically to show the size-dependent effects of thermopiezoelectricity,thermoelasticity,piezoelectricity,and elasticity theories of nanostructures.The numerical results also show the effects of the sizedependent and piezoelectric on the displacement components.The validity,efficiency and accuracy of the proposed BEM formulation and algorithm have been demonstrated.The findings of the current study contribute to the further development of technological and industrial applications of smart nanostructures.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第10期931-944,共14页 计算机、材料和连续体(英文)
  • 相关文献

参考文献2

二级参考文献9

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部