摘要
Steganography based on generative adversarial networks(GANs)has become a hot topic among researchers.Due to GANs being unsuitable for text fields with discrete characteristics,researchers have proposed GANbased steganography methods that are less dependent on text.In this paper,we propose a new method of generative lyrics steganography based on GANs,called GAN-GLS.The proposed method uses the GAN model and the largescale lyrics corpus to construct and train a lyrics generator.In this method,the GAN uses a previously generated line of a lyric as the input sentence in order to generate the next line of the lyric.Using a strategy based on the penalty mechanism in training,the GAN model generates non-repetitive and diverse lyrics.The secret information is then processed according to the data characteristics of the generated lyrics in order to hide information.Unlike other text generation-based linguistic steganographic methods,our method changes the way that multiple generated candidate items are selected as the candidate groups in order to encode the conditional probability distribution.The experimental results demonstrate that our method can generate highquality lyrics as stego-texts.Moreover,compared with other similar methods,the proposed method achieves good performance in terms of imperceptibility,embedding rate,effectiveness,extraction success rate and security.
基金
This work was supported in part by the National Natural Science Foundation of China under Grant 61872134,61672222,author Y.L.Liu,http://www.nsfc.gov.cn/
in part by Science and Technology Development Center of the Ministry of Education under Grant 2019J01020,author Y.L.Liu,http://www.moe.gov.cn/
in part by Science and Technology Project of Transport Department of Hunan Province under Grant 201935,author Y.L.Liu,http://jtt.hunan.gov.cn/
Science and Technology Program of Changsha City under Grant kh200519,kq2004021,author Y.L.Liu,http://kjj.changsha.gov.cn/.