期刊文献+

基于通道注意力的轻量行人检测算法 被引量:2

Lightweight pedestrian detection algorithm based on channel attention
下载PDF
导出
摘要 YOLOv3算法参数量和计算量较大,不适合在移动端上使用。针对这个问题,文中通过优化YOLOv3算法提出一种基于注意力机制的轻量行人检测算法。首先,采用轻量级网络优化YOLOv3模型结构,减少模型的参数量和计算量;其次,设计下采样通道注意力模块代替Darknet53中的下采样层;最后,为了进一步丰富目标特征信息,增强小尺度行人的检测能力,引入特征增强模块。在INRIA数据集上的实验结果表明,所提出方法参数量相比YOLOv3模型降低约18,模型平均准确率提高3.85%。相比其他轻量化算法,提出的算法模型复杂度更低并且检测性能更好。 The YOLOv3 algorithm is not suitable for use on mobile terminals due to its parameter quantity and calculation quantity are large.On this basis,a lightweight pedestrian detection algorithm based on attention mechanism is proposed by optimizing the YOLOv3 algorithm.The YOLOv3 model structure is optimized by means of lightweight network to decrease the parameters quantity and calculated quantity of model.A down⁃sampling channel attention module is designed to replace the down⁃sampling layer in Darknet53.The feature enhancement module is introduced to further enrich the target feature information and improve the detection ability of small⁃scale pedestrians.The experimental results on the INRIA datasets show that the proposed method can reduce parameters count by 18 in comparison with the YOLOv3 model,and increase the average accuracy by 3.85%.In comparison with other lightweight algorithms,the proposed algorithm has lower complexity and better detection performance.
作者 张文龙 南新元 徐明明 黄家興 ZHANG Wenlong;NAN Xinyuan;XU Mingming;HUANG Jiaxing(School of Electrical Engineering,Xinjiang University,Urumchi 830047,China)
出处 《现代电子技术》 2022年第16期133-138,共6页 Modern Electronics Technique
基金 新疆维吾尔自治区自然科学基金项目(2019D01C079)。
关键词 行人检测 通道注意力 YOLOv3 轻量级网络 特征增强 深度学习 残差网络 空间金字塔池化 pedestrian detection channel attention YOLOv3 lightweight network feature enhancement deep learning residual network spatial pyramid pooling
  • 相关文献

参考文献3

二级参考文献8

共引文献31

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部