期刊文献+

An Optimized SW/HW AVMF Design Based on High-Level Synthesis Flow for Color Images 被引量:2

下载PDF
导出
摘要 In this paper,a software/hardware High-level Synthesis(HLS)design is proposed to compute the Adaptive Vector Median Filter(AVMF)in realtime.In fact,this filter is known by its excellent impulsive noise suppression and chromaticity conservation.The software(SW)study of this filter demonstrates that its implementation is too complex.The purpose of this work is to study the impact of using an HLS tool to design ideal floating-point and optimized fixed-point hardware(HW)architectures for the AVMF filter using square root function(ideal HW)and ROM memory(optimized HW),respectively,to select the best HLS architectures and to design an efficient HLS software/hardware(SW/HW)embedded AVMF design to achieve a trade-off between the processing time,power consumption and hardware cost.For that purpose,some approximations using ROM memory were proposed to perform the square root and develop a fixed-point AVMF algorithm.After that,the best solution generated for each HLS design was integrated in the SW/HW environment and evaluated under ZC702 FPGA platform.The experimental results showed a reduction of about 65%and 98%in both the power consumption and processing time for the ideal SW/HW implementation relative to the ideal SW implementation for an AVMF filter with the same image quality,respectively.Moreover,the power consumption and processing time of the optimized SW/HW are 70%and 97%less than the optimized SW implementation,respectively.In addition,the Look Up Table(LUTs)percentage,power consumption and processing time used by the optimized SW/HW design are improved by nearly 45%,18%and 61%compared the ideal SW/HW design,respectively,with slight decrease in the image quality.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第9期2925-2943,共19页 计算机、材料和连续体(英文)
基金 The authors extend their appreciation to the Deanship of Scientific Research at Jouf University(Kingdom of Saudi Arabia)for funding this work through research Grant No.DSR2020-06-3663.
  • 相关文献

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部