期刊文献+

Extended Forgery Detection Framework for COVID-19 Medical Data Using Convolutional Neural Network

下载PDF
导出
摘要 Medical data tampering has become one of the main challenges in the field of secure-aware medical data processing.Forgery of normal patients’medical data to present them as COVID-19 patients is an illegitimate action that has been carried out in different ways recently.Therefore,the integrity of these data can be questionable.Forgery detection is a method of detecting an anomaly in manipulated forged data.An appropriate number of features are needed to identify an anomaly as either forged or non-forged data in order to find distortion or tampering in the original data.Convolutional neural networks(CNNs)have contributed a major breakthrough in this type of detection.There has been much interest from both the clinicians and the AI community in the possibility of widespread usage of artificial neural networks for quick diagnosis using medical data for early COVID-19 patient screening.The purpose of this paper is to detect forgery in COVID-19 medical data by using CNN in the error level analysis(ELA)by verifying the noise pattern in the data.The proposed improved ELA method is evaluated using a type of data splicing forgery and sigmoid and ReLU phenomenon schemes.The proposed method is verified by manipulating COVID-19 data using different types of forgeries and then applying the proposed CNN model to the data to detect the data tampering.The results show that the accuracy of the proposed CNN model on the test COVID-19 data is approximately 92%.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第9期3773-3787,共15页 计算机、材料和连续体(英文)
基金 The work was partially supported by Computer Research Institute of Montreal,Quebec,Canada,we acknowledge the support of Ministère de l’Économie et de l’Innovation,Quebec,Canada.This work was also partially supported by Taif University Researchers Supporting Project Number(TURSP-2020/215),Taif University,Taif,Saudi Arabia.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部