摘要
This paper addresses the problem of tensor completion from limited samplings.Generally speaking,in order to achieve good recovery result,many tensor completion methods employ alternative optimization or minimization with SVD operations,leading to a high computational complexity.In this paper,we aim to propose algorithms with high recovery accuracy and moderate computational complexity.It is shown that the data to be recovered contains structure of Kronecker Tensor decomposition under multiple patterns,and therefore the tensor completion problem becomes a Kronecker rank optimization one,which can be further relaxed into tensor Frobenius-norm minimization with a constraint of a maximum number of rank-1 basis or tensors.Then the idea of orthogonal matching pursuit is employed to avoid the burdensome SVD operations.Based on these,two methods,namely iterative rank-1 tensor pursuit and joint rank-1 tensor pursuit are proposed.Their economic variants are also included to further reduce the computational and storage complexity,making them effective for large-scale data tensor recovery.To verify the proposed algorithms,both synthesis data and real world data,including SAR data and video data completion,are used.Comparing to the single pattern case,when multiple patterns are used,more stable performance can be achieved with higher complexity by the proposed methods.Furthermore,both results from synthesis and real world data shows the advantage of the proposed methods in term of recovery accuracy and/or computational complexity over the state-of-the-art methods.To conclude,the proposed tensor completion methods are suitable for large scale data completion with high recovery accuracy and moderate computational complexity.
基金
supported in part by the Foundation of Shenzhen under Grant JCYJ20190808122005605
in part by National Science Fund for Distinguished Young Scholars under grant 61925108
in part by the National Natural Science Foundation of China(NSFC)under Grant U1713217 and U1913203.