摘要
Background:A brain tumor reects abnormal cell growth.Challenges:Surgery,radiation therapy,and chemotherapy are used to treat brain tumors,but these procedures are painful and costly.Magnetic resonance imaging(MRI)is a non-invasive modality for diagnosing tumors,but scans must be interpretated by an expert radiologist.Methodology:We used deep learning and improved particle swarm optimization(IPSO)to automate brain tumor classication.MRI scan contrast is enhanced by ant colony optimization(ACO);the scans are then used to further train a pretrained deep learning model,via transfer learning(TL),and to extract features from two dense layers.We fused the features of both layers into a single,more informative vector.An IPSO algorithm selected the optimal features,which were classied using a support vector machine.Results:We analyzed high-and low-grade glioma images from the BRATS 2018 dataset;the identication accuracies were 99.9%and 99.3%,respectively.Impact:The accuracy of our method is signicantly higher than existing techniques;thus,it will help radiologists to make diagnoses,by providing a“second opinion.”
基金
supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)
the Soonchunhyang University Research Fund.