期刊文献+

Real-Time Anomaly Detection in Packaged Food X-Ray Images Using Supervised Learning

下载PDF
导出
摘要 Physical contamination of food occurs when it comes into contact with foreign objects.Foreign objects can be introduced to food at any time during food delivery and packaging and can cause serious concerns such as broken teeth or choking.Therefore,a preventive method that can detect and remove foreign objects in advance is required.Several studies have attempted to detect defective products using deep learning networks.Because it is difficult to obtain foreign object-containing food data from industry,most studies on industrial anomaly detection have used unsupervised learning methods.This paper proposes a new method for real-time anomaly detection in packaged food products using a supervised learning network.In this study,a realistic X-ray image training dataset was constructed by augmenting foreign objects with normal product images in a cut-paste manner.Based on the augmented training dataset,we trained YOLOv4,a real-time object detection network,and detected foreign objects in the test data.We evaluated this method on images of pasta,snacks,pistachios,and red beans under the same conditions.The results show that the normal and defective products were classified with an accuracy of at least 94%for all packaged foods.For detecting foreign objects that are typically difficult to detect using the unsupervised learning and traditional methods,the proposed method achieved high-performance realtime anomaly detection.In addition,to eliminate the loss in high-resolution X-ray images,the false positive rate and accuracy could be lowered to 5%with patch-based training and a new post-processing algorithm.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第5期2547-2568,共22页 计算机、材料和连续体(英文)
基金 supported by Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Education(grant number 2020R1A6A1A03040583,Kangjik Kim,www.nrf.re.kr) this research was also supported by the Soonchunhyang University Research Fund.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部