期刊文献+

涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输 被引量:1

Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system
下载PDF
导出
摘要 通过构造两个线性耦合的拉盖尔-高斯旋转腔系统,实现携带轨道角动量的涡旋光束的非互易传输现象.系统中,两个拉盖尔-高斯旋转腔模通过扭力与中间的旋转镜耦合,同时两个涡旋腔场通过光纤直接耦合起来.两个强光场分别驱动不同的腔模,并利用一个弱探测场从系统一侧入射,从而对该系统两个传播方向的光响应特性进行研究.利用该系统哈密顿量和海森伯-郎之万方程,结合输入-输出关系可得到系统的输出光谱.结果表明此系统中的涡旋光束的非互易性来源于光旋转相互作用以及涡旋腔场相互作用之间的量子干涉效应.因此,可以通过调节非互易相位差来对系统的非互易传输进行调制.此外,两个涡旋光束所携带的拓扑荷比值会显著影响传输特性;在适当的拓扑荷比值下,该系统可以实现涡旋光束的单向传输.本研究成果有望用于实现理想的涡旋光隔离器. By constructing an optorotational system composed of two linearly coupled Laguerre-Gaussian rotational cavities,we realize the nonreciprocal transmission of the vortex beam with the orbital angular momentum.Two vortex beam cavity modes driven by strong fields are coupled with a rotational mirror via the torsion,and two cavity modes interact with each other via the optical fiber.A weak probe field is incident from one side of the system for examining the optical response along one propagating direction.With the Hamiltonian of the system and the Heisenberg-Langevin equation,we can obtain the transmission of the output light field from the inputoutput theory.The result shows that the optical nonreciprocity of the vortex beam arises from the quantum interference between the optorotational interaction and the linear coupling interaction between two vortex beam modes,and the phase difference can be used to adjust the optical nonreciprocity.The phase difference can determine not only the occurrence of the nonreciprocity but also the direction of nonreciprocity.Moreover,the ratio of the topological charges carried by the two vortex beam fields has an influence on the transmission.Under an appropriate topological charge ratio,the unidirectional transmission of the vortex beam can be realized in such a system.It is found that whether the topological charge ratio is positive or negative,i.e.whether the vortex beam is left-hand beam or right-hand beam,does not affect the transmission;the influence of the topological charge on the transmission amplitude actually comes from the topological charge number carried by the vortex beam,due to the fact that the coupling strength between the rotating mirror mode and the cavity mode depends on the topological charge number.In addition,we also obtain the condition that the system damping rates should meet for realizing the perfect nonreciprocal propagation of the vortex beam.Finally,we can achieve the nonreciprocal group velocity of the slow light.The direction of the nonreciprocal slow light can be controlled via phase modulation.Our work provides a possible application in manipulating the vortex beam propagation.Furthermore,we extend the nonreciprocity of ordinary beams in the optomechanical system to the nonreciprocity of the vortex beam in the optorotational system.The results are expected to be applied to fabricating the ideal optical isolators for the vortex beam carrying the orbital angular momentum in optical communication.
作者 朱雪松 刘星雨 张岩 Zhu Xue-Song;Liu Xing-Yu;Zhang Yan(National Demonstration Center for Experimental Physics Education,School of Physics,Northeast Normal University,Changchun 130024,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第15期56-64,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11704064) 吉林省教育厅“十四五”科学技术项目(批准号:JJKH20211279KJ) 中央高校基本科研业务费(批准号:2412019FZ045)资助的课题。
关键词 涡旋光束 拉盖尔-高斯旋转腔 非互易传输 拓扑荷 vortex beam Laguerre-Gaussian rotational cavity nonreciprocal propagation topological charge
  • 相关文献

参考文献3

二级参考文献47

  • 1Aspelmeyer M, Groblaeher S, Hammerer K, Kiesel N .2010 J. Opt. Soc. Am. B 27 A189.
  • 2La Haye M D, Buu O, Camarota B, Schwab K C .2004 Science 304 74.
  • 3Ekinci K L, Yang Y T, Roukes M L .2004 J. Appl. Phys. 95 2682.
  • 4Caves C M .1980 Phys. Rev. Lett. 45 75.
  • 5Schwab K C, Roukes M L .2005 Phys. Today 58 36.
  • 6Leggett A J .2002 J. Phys: Condens. Matter 14 R415.
  • 7Marshall W, Simon C, Penrose R, Bouwmeester D .2003 Phys. Rev. Lett. 91 130401.
  • 8Kippenberg T J, Vahala K J .2008 Science 321 1172.
  • 9Gigan S, Bohm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A .2006 Nature 444 67.
  • 10Kleckner D, Bouwmeester D .2006 Nature 444 75.

共引文献16

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部