期刊文献+

Enabling Smart Cities with Cognition Based Intelligent Route Decision in Vehicles Empowered with Deep Extreme Learning Machine

下载PDF
导出
摘要 The fast-paced growth of artificial intelligence provides unparalleled opportunities to improve the efficiency of various industries,including the transportation sector.The worldwide transport departments face many obstacles following the implementation and integration of different vehicle features.One of these tasks is to ensure that vehicles are autonomous,intelligent and able to grow their repository of information.Machine learning has recently been implemented in wireless networks,as a major artificial intelligence branch,to solve historically challenging problems through a data-driven approach.In this article,we discuss recent progress of applying machine learning into vehicle networks for intelligent route decision and try to focus on this emerging field.Deep Extreme Learning Machine(DELM)framework is introduced in this article to be incorporated in vehicles so they can take human-like assessments.The present GPS compatibility issues make it difficult for vehicles to take real-time decisions under certain conditions.It leads to the concept of vehicle controller making self-decisions.The proposed DELM based system for self-intelligent vehicle decision makes use of the cognitive memory to store route observations.This overcomes inadequacy of the current in-vehicle route-finding technology and its support.All the relevant route-related information for the ride will be provided to the user based on its availability.Using the DELM method,a high degree of precision in smart decision taking with a minimal error rate is obtained.During investigation,it has been observed that proposed framework has the highest accuracy rate with 70%of training(1435 samples)and 30%of validation(612 samples).Simulation results validate the intelligent prediction of the proposed method with 98.88%,98.2%accuracy during training and validation respectively.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第1期141-156,共16页 计算机、材料和连续体(英文)
基金 the KIAS(Research Number:CG076601) in part by Sejong University Faculty Research Fund.
  • 相关文献

参考文献2

二级参考文献20

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部