期刊文献+

ACLSTM:A Novel Method for CQA Answer Quality Prediction Based on Question-Answer Joint Learning 被引量:2

下载PDF
导出
摘要 Given the limitations of the community question answering(CQA)answer quality prediction method in measuring the semantic information of the answer text,this paper proposes an answer quality prediction model based on the question-answer joint learning(ACLSTM).The attention mechanism is used to obtain the dependency relationship between the Question-and-Answer(Q&A)pairs.Convolutional Neural Network(CNN)and Long Short-term Memory Network(LSTM)are used to extract semantic features of Q&A pairs and calculate their matching degree.Besides,answer semantic representation is combined with other effective extended features as the input representation of the fully connected layer.Compared with other quality prediction models,the ACLSTM model can effectively improve the prediction effect of answer quality.In particular,the mediumquality answer prediction,and its prediction effect is improved after adding effective extended features.Experiments prove that after the ACLSTM model learning,the Q&A pairs can better measure the semantic match between each other,fully reflecting the model’s superior performance in the semantic information processing of the answer text.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第1期179-193,共15页 计算机、材料和连续体(英文)
基金 the Zhejiang Provincial Natural Science Foundation of China under Grant No.LGF18F020011.
  • 相关文献

参考文献5

二级参考文献36

  • 1张亮,王树梅,黄河燕,张孝飞.面向中文问答系统的问句句法分析[J].山东大学学报(理学版),2006,41(3):85-88. 被引量:5
  • 2张仰森,曹元大,俞士汶.基于规则与统计相结合的中文文本自动查错模型与算法[J].中文信息学报,2006,20(4):1-7. 被引量:34
  • 3Agichtein E, Castillo C, Donato D, et al. Finding high-quality content in social media [C] // Proceedings of the International Conference on Web Search and Web Data Mining Palo Alto. Cal- ifornia, USA, 2008.
  • 4Shah C, Pomerantz J. Evaluating and Predicting Answer Quality in Community QA [C] // SIGIR ' 10. Geneva, Switzerland, July 2010:19-23.
  • 5Broder A, Kumar R, Maghoul F, et al. Graph structure in the Web[J]. Computer Networks, 2000: 33 (1-6) :309-320.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine [J]. Computer Networks and ISDN Systems, 1998,30(1-7) :107-117.
  • 7Kleinberg J M. Authoritative sources in a hyperlinked environ- ment[J]. Journal of the ACM, 1999,46(5) :604-632.
  • 8Zhou Y,Croft W B. Document quality models for web ad hoe re- trieval[C]//Proceedings of the ACM Fourteenth Conference on Information and Knowledge Management. 2005:331-332.
  • 9Jurezyk P, Agichtein E. Discovering authorities in question-an- swer communities using link analysis[C]//ACM Conference on Information and Knowledge Management(CIKM). 2007.
  • 10J urczyk P,Agiehtein E. Hits on question answer portals:an ex- ploration of link analysis for author ranking[C]//SIGIR (pos- ters). ACM, 2007.

共引文献110

同被引文献30

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部