期刊文献+

Mixed Convection of Non-Newtonian Erying Powell Fluid with Temperature-Dependent Viscosity over a Vertically Stretched Surface

下载PDF
导出
摘要 The viscosity of a substance or material is intensely influenced by the temperature,especially in the field of lubricant engineering where the changeable temperature is well executed.In this paper,the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition.The flow was assumed to move over a vertical stretching sheet.The model of the problem,which is in partial differential equations,was first transformed to ordinary differential equations using appropriate transformations.This approach was considered to reduce the complexity of the equations.Then,the transformed equations were solved using the Keller box method under the finite difference scheme approach.The validation process of the results was performed,and it was found to be in an excellent agreement.The results on the present computation are shown in tabular form and also graphical illustration.The major finding was observed where the skin friction and Nusselt number were boosted in the strong viscosity.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第1期421-435,共15页 计算机、材料和连续体(英文)
基金 Ministry of Higher Education and Universiti Malaysia Pahang through RDU182307.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部