摘要
COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learning algorithms can provide effective models that solve problems in order to predict conrmed cases,recovered cases,and deaths.Many researchers and scientists in the eld of machine learning are also involved in solving this dilemma,seeking to understand the patterns and characteristics of virus attacks,so scientists may make the right decisions and take specic actions.Furthermore,many models have been considered to predict the Coronavirus outbreak,such as the retro prediction model,pandemic Kaplan’s model,and the neural forecasting model.Other research has used the time series-dependent face book prophet model for COVID-19 prediction in India’s various countries.Thus,we proposed a prediction and analysis model to predict COVID-19 in Saudi Arabia.The time series dependent face book prophet model is used to t the data and provide future predictions.This study aimed to determine the pandemic prediction of COVID-19 in Saudi Arabia,using the Time Series Analysis to observe and predict the coronavirus pandemic’s spread daily or weekly.We found that the proposed model has a low ability to forecast the recovered cases of the COVID-19 dataset.In contrast,the proposed model of death cases has a high ability to forecast the COVID-19 dataset.Finally,obtaining more data could empower the model for further validation.