期刊文献+

Screening of COVID-19 Patients Using Deep Learning and IoT Framework 被引量:1

下载PDF
导出
摘要 In March 2020,the World Health Organization declared the coronavirus disease(COVID-19)outbreak as a pandemic due to its uncontrolled global spread.Reverse transcription polymerase chain reaction is a laboratory test that is widely used for the diagnosis of this deadly disease.However,the limited availability of testing kits and qualified staff and the drastically increasing number of cases have hampered massive testing.To handle COVID19 testing problems,we apply the Internet of Things and artificial intelligence to achieve self-adaptive,secure,and fast resource allocation,real-time tracking,remote screening,and patient monitoring.In addition,we implement a cloud platform for efficient spectrum utilization.Thus,we propose a cloudbased intelligent system for remote COVID-19 screening using cognitiveradio-based Internet of Things and deep learning.Specifically,a deep learning technique recognizes radiographic patterns in chest computed tomography(CT)scans.To this end,contrast-limited adaptive histogram equalization is applied to an input CT scan followed by bilateral filtering to enhance the spatial quality.The image quality assessment of the CT scan is performed using the blind/referenceless image spatial quality evaluator.Then,a deep transfer learning model,VGG-16,is trained to diagnose a suspected CT scan as either COVID-19 positive or negative.Experimental results demonstrate that the proposed VGG-16 model outperforms existing COVID-19 screening models regarding accuracy,sensitivity,and specificity.The results obtained from the proposed system can be verified by doctors and sent to remote places through the Internet.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第12期3459-3475,共17页 计算机、材料和连续体(英文)
基金 This study was supported by the grant of the National Research Foundation of Korea(NRF 2016M3A9E9942010) the grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI) funded by the Ministry of Health&Welfare(HI18C1216) the Soonchunhyang University Research Fund.
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部