期刊文献+

Monarch Butterfly Optimization for Reliable Scheduling in Cloud

下载PDF
导出
摘要 Enterprises have extensively taken on cloud computing environment since it provides on-demand virtualized cloud application resources.The scheduling of the cloud tasks is a well-recognized NP-hard problem.The Task scheduling problem is convoluted while convincing different objectives,which are dispute in nature.In this paper,Multi-Objective Improved Monarch Butterfly Optimization(MOIMBO)algorithm is applied to solve multi-objective task scheduling problems in the cloud in preparation for Pareto optimal solutions.Three different dispute objectives,such as makespan,reliability,and resource utilization,are deliberated for task scheduling problems.The Epsilonfuzzy dominance sort method is utilized in the multi-objective domain to elect the foremost solutions from the Pareto optimal solution set.MOIMBO,together with the Self Adaptive and Greedy Strategies,have been incorporated to enrich the performance of the proposed algorithm.The capability and effectiveness of the proposed algorithm are measured with NSGA-II and MOPSO algorithms.The simulation results prompt that the proposed MOIMBO algorithm extensively diminishes the makespan,maximize the reliability,and guarantees the appropriate resource utilization when associating it with identified existing algorithms.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第12期3693-3710,共18页 计算机、材料和连续体(英文)
  • 相关文献

参考文献1

二级参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部