期刊文献+

Advanced Community Identification Model for Social Networks 被引量:1

下载PDF
导出
摘要 Community detection in social networks is a hard problem because of the size,and the need of a deep understanding of network structure and functions.While several methods with significant effort in this direction have been devised,an outstanding open problem is the unknown number of communities,it is generally believed that the role of influential nodes that are surrounded by neighbors is very important.In addition,the similarity among nodes inside the same cluster is greater than among nodes from other clusters.Lately,the global and local methods of community detection have been getting more attention.Therefore,in this study,we propose an advanced communitydetection model for social networks in order to identify network communities based on global and local information.Our proposed model initially detects the most influential nodes by using an Eigen score then performs local expansion powered by label propagation.This process is conducted with the same color till nodes reach maximum similarity.Finally,the communities are formed,and a clear community graph is displayed to the user.Our proposed model is completely parameter-free,and therefore,no prior information is required,such as the number of communities,etc.We perform simulations and experiments using well-known synthetic and real network benchmarks,and compare them with well-known state-of-the-art models.The results prove that our model is efficient in all aspects,because it quickly identifies communities in the network.Moreover,it can easily be used for friendship recommendations or in business recommendation systems.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第11期1687-1707,共21页 计算机、材料和连续体(英文)
基金 This research was supported by the Ministry of Trade,Industry&Energy(MOTIE,Korea)under the Industrial Technology Innovation Program,No.10063130 by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1006159) by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2019-2016-0-00313)supervised by the Institute for Information&communications Technology Promotion(IITP).
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部