期刊文献+

随机时滞马尔可夫跳跃系统的有限时间H_(∞)控制 被引量:2

Finite-time H_(∞)control of stochastic time-delay Markovian jump systems
下载PDF
导出
摘要 研究了一类具有时滞和外部扰动的线性随机马尔可夫跳跃系统的有限时间H_(∞)控制问题,由通用控制器实现系统有限时间H_(∞)有界。首先,构造Lyapunov函数并结合线性矩阵不等式理论,给出随机系统有限时间H_(∞)有界的充分条件;然后,设计一种部分依赖时滞的通用控制器,使得闭环系统有限时间H_(∞)有界;最后,通过一个数值算例验证所提方法的有效性。 This paper deals with the finite-time H_(∞) control problem for linear stochastic Markovian jump systems with time-delay and external disturbance,where the finite-time H_(∞) boundedness is realized by a general controller.Firstly,a sufficient condition was proposed for the finite-time H_(∞) boundedness by constructing a Lyapunov function and combining linear matrix inequality theory.Secondly,a kind of partially delay-dependent controller was developed to guarantee the finite-time H_(∞) boundedness of the closed-loop systems.Finally,the effectiveness of the proposed methods was demonstrated through a numerical example.
作者 刘西奎 刘文成 李艳 庄继晶 LIU Xikui;LIU Wencheng;LI Yan;ZHUANG Jijing(College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao,Shandong 266590,China;Department of Electrical Engineering and Information Technology,Shandong University of Science and Technology,Jinan,Shandong 250031,China)
出处 《山东科技大学学报(自然科学版)》 CAS 北大核心 2022年第4期75-84,共10页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(61972236) 山东省自然科学基金项目(ZR2018MF013)。
关键词 时滞 马尔可夫跳跃 通用控制器 有限时间H_(∞)有界 time-delay Markovian jump general controller finite-time H_(∞)boundedness
  • 相关文献

参考文献2

二级参考文献17

  • 1FENGJun-E,WUZhen,SUNJia-Bing.Finite-time Control of Linear Singular Systems with Parametric Uncertainties and Disturbances[J].自动化学报,2005,31(4):634-637. 被引量:28
  • 2Hinrichsen D, Pritchard A J. Stochastic H∞[J]. SIAM J on Control and Optimization, 1998, 36(5): 1504-1538.
  • 3Damm T. State-feedback Hoo-type control of linear systems with time-varying parameter uncertainty[J]. Linear Algebra and Its Applications, 2002, (351/352): 185-210.
  • 4Zhang W H, Chen B S. State feedback H∞ control for a class of nonlinear stochastic systems[J]. SIAM J of Control and Optimization, 2006, 44(6): 1973-1991.
  • 5Hasminskii R Z. Stochastic stability of differential aligns[M]. Alphen: Sijtjoff, Nordhoff, 1980.
  • 6Dorato P. Short time stability in linear time-varying systems[C]. Proc of IRE Int Convention Record. New York, 1961, 4: 83-87.
  • 7Weiss Infante L E. Finite time stability under perturbing forces and on product spaces[J]. IEEE Trans on Automatic Control, 1967, 12(1): 54-59.
  • 8Amato F, Ariola M, Dorato E Finite time control of linear system subject to parametric uncertainties and disturbances[J]. Automatica, 2001, 37(9): 1459-1463.
  • 9Amato F, Ariola M, Dorato E Finite time stabilization via dynamic output feedback[J]. Automatica, 2006, 42(2): 337-342.
  • 10Yan Z G, Zhang G S, Wang J K. Finite-time stability and stabilization of linear stochastic systems[C]. Proc of the 29th Chinese Control Conf. Beijing: IEEE Press, 2010: 1115-1120.

共引文献9

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部