期刊文献+

Variable-step-size second-order-derivative multistep method for solving first-order ordinary differential equations in system simulation

原文传递
导出
摘要 According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed.
出处 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第1期42-57,共16页 建模、仿真和科学计算国际期刊(英文)
基金 supported by the National Natural Science Foundation of China Under Grant No.61773008.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部