期刊文献+

基于加速度和卷积神经网络的船体板裂纹损伤检测 被引量:2

Hull plate crack damage detection based on acceleration and convolutional neural network
下载PDF
导出
摘要 裂纹是船舶结构中最常见的损伤形式之一。由于船舶结构十分复杂而且密闭空间多,传统的依靠人力的裂纹损伤检测方法耗时长、主观依赖性强,难以满足智能船舶的需求。本文提出了一个基于加速度和卷积神经网络(convolutional neural networks,CNN)的船体板裂纹损伤实时在线无损检测方法,该方法能够自动地学习裂纹损伤特征。通过基于Python语言的Abaqus二次开发技术建立简支板损伤模型并计算其动力学响应。采集板的加速度数据用于训练CNN模型,利用数据裁剪技术对数据集进行扩充,讨论了不同CNN结构形式对船体板裂纹损伤检测的影响。与基于小波包变换的多层感知机神经网络相比,提出的CNN方法能够更好地提取裂纹位置和长度损伤特征,同时对噪声的敏感程度较低。 Crack is one of the most common damage forms of ship structures.Because the ship structure is very complicated and there are many confined spaces,the traditional human-based crack damage detection method is time-consuming and subjectively dependent,which is difficult to meet the needs of intelligent ships.A hull plate crack damage real-time online non-destructive detection method was proposed based on acceleration and convolutional neural network(CNN),which can automatically learn crack damage character⁃istics.With the Abaqus scripting interface,simply-supported plate models with preset cracks were modeled.Node accelerations at representative locations were adopted as the CNN input parameters.The data cropping method was adopted for the augmentation of samples.The effect of CNN structures on the hull plate crack damage detection was discussed.Compared with the multilayer perceptron neural network based on wavelet packet transformation,the proposed CNN method can better extract the crack location and length damage characteristics and is less sensitive to noise.
作者 马栋梁 王德禹 MA Dong-liang;WANG De-yu(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《船舶力学》 EI CSCD 北大核心 2022年第8期1180-1188,共9页 Journal of Ship Mechanics
基金 教育部、财政部重大专项KSHIP-II资助(201335)。
关键词 卷积神经网络 裂纹检测 动力学响应 噪声 convolutional neural network crack detection dynamic response noise
  • 相关文献

参考文献4

二级参考文献22

  • 1张兢,路彦和.基于小波包频带能量检测技术的故障诊断[J].微计算机信息,2006,22(02S):202-204. 被引量:24
  • 2Doebling,S. W,Farrar ,C.R,Prime , M.B,Shevitz ,D. W.Damage identification and health moni-toringofstructural and mechanical systems fromchanges intheir vibration characteristics : aliterature review[].ReportNoLA--MS.1996
  • 3Jiang,S.F.Structure optimization and damage detection by neural networks[]..2002
  • 4Kanazawa , K,Hirata , K.Modal identification for a multi degree of freedomsystemusing cross spectrummethod[].Journal ofStructural and Construction EngineeringAIJ.2000
  • 5Lam, H.F,Ko,J . M,Wong,C. W.Localization of damagedstructural connection based on experimen-tal modal and sensitivity analysis[].Journal of Sound and Vibration.1998
  • 6Lee ,J .J,Lee ,J . W,Yi ,J .H,Yun,C.B,Jung,H.Y.Neural networks-based damage detectionfor bridges considering errorsin ba seline finite element models[].Journal ofSoundand Vibration.2005
  • 7Sohn, H,Farrar ,C.R,Hemez ,F. M,Shunk,D.D,Stinemates ,D. W,Nadler ,B.R,Czarnecki ,J .J.Areviewofstructural health monitoringliterature :1996-2001[].Report No LA--MS.2004
  • 8Szewczyk,Z.P,Hajela , P.Damage detection in structures based on feature-sensitive neural networks[].Journal ofComputingin Civil EngineeringASCE.1994
  • 9Yun,C.B,Bahng,E. Y.Substructural identification using neural networks[].Computers and Structures.2000
  • 10Xu B,Wu ZS,Chen G,Yokoyama K.Direct identification of structural parameters from dynamic responses with neural networks[].Engineering Applications of Artificial Intelligence.2004

共引文献58

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部