摘要
本研究采用神经网络方法,对准确的化学反应速率与反应标量之间的非线性关系进行建模,发展了一种基于人工神经网络(ANN)的燃烧模型.借鉴动态二阶矩模型建模思想,将标量分布的梯度纳入神经网络模型的输入集中,进一步发展出梯度输入人工神经网络(ANN-G)模型.基于一个预混火焰直接数值模拟数据库,对人工神经网络模型进行先验性研究,发现对于反应区域较薄的反应步,ANN模型与ANN-G模型都能准确计算化学反应速率.在泛化验证中,ANN-G模型比ANN模型表现更好.
A new artificial neural network(ANN)based combustion model has been developed by modelling the non-linear relationship between the accurate chemistry reaction rate and the known scalars based on the ANN method.With the Dynamic Second-order Moment Closure model for reference,the gradient of the scalar distribution is added as extra input variable,and the artificial neural network with gradient input(ANN-G)model is then developed.The two models have been validated in the a-priori analysis on the basis of the direct numerical simulation database of a premixed flame.It is observed that both the ANN model and the ANN-G model can predict the chemical reaction rate more accurately than laminar chemistry closure model,especially for the reaction steps in the thin reaction zone.In addition,the ANN-G model has better performance than the ANN model in the generalization validation.
作者
刘润之
罗坤
邢江宽
樊建人
Liu Runzhi;Luo Kun;Xing Jiangkuan;Fan Jianren(College of Energy Engineering,Zhejiang University,Hangzhou 310027,China)
出处
《燃烧科学与技术》
CAS
CSCD
北大核心
2022年第4期433-439,共7页
Journal of Combustion Science and Technology
基金
国家自然科学基金资助项目(91741203).
关键词
湍流燃烧
人工神经网络
燃烧模型
先验性检验
turbulent combustion
artificial neural network
combustion model
a-priori analysis