期刊文献+

RNA支架系统介导大肠杆菌生产甲羟戊酸

Increasing mevalonate production mediated by RNA scaffolds system in Escherichia coli
下载PDF
导出
摘要 利用0D RNA支架系统可共聚集酶的优势提高大肠杆菌甲羟戊酸的产量。通过RNA-EMSA证明RNA适配体与RBDs(RNA binding domains)存在相互作用;将RBDs与荧光蛋白融合表达以评估RNA支架系统效率。相比对照菌株BLCCG,表达0D RNA支架的菌株BLPCG及表达RBDs的菌株BLCPG荧光强度分别提高126%和129%。表达0D PP7 RNA支架系统的菌株BLPPG提高375%;应用0D RNA支架系统生产甲羟戊酸。相比对照菌株BLCCES,表达0D PP7 RNA支架系统菌株BLPPES的甲羟戊酸产量提高84%,达3.13 g/L。因此,RNA支架系统是提高多酶代谢途径效率的有效工具。 In this study,the advantage of 0D RNA scaffold system was used to co-localize the three-step reaction of mevalonate to improve the yield of mevalonate in E.coli.Firstly,RNA-EMSA was used to demonstrate the interaction between RNA aptamers and RBDs(RNA binding domains).Subsequently,RBDs were fused with fluorescent protein to evaluate the efficiency of RNA scaffold system.Compared with that of the control strain BLCGG,the relative fluorescence intensities of BLPCG and BLCPG were increased by 126%and 129%,respectively.The fluorescence intensity of BLPPG was increased by 375%in the strain expressed 0D PP7 RNA scaffold system.Finally,mevalonate was produced by 0D RNA scaffold system.Compared with that of the control strain BLCCES,the mevalonate production of BLPPES expressing 0D PP7 RNA scaffold system was increased by 84%,achieved 3.13 g/L.Therefore,RNA scaffold system is an effective tool to improve the efficiency of multi-enzyme metabolic pathway.
作者 董洪钢 刘春立 刘秀霞 李业 杨艳坤 白仲虎 DONG Honggang;LIU Chunli;LIU Xiuxia;LI Ye;YANG Yankun;BAI Zhonghu(National Engineering Laboratory of Cereal Fermentation Technology,Wuxi 214122,China;Key Laboratory of Industrial Biotechnology,Ministry of Education,Wuxi 214122,China;School of Biotechnology,Jiangnan University,Wuxi 214122,China)
出处 《生物学杂志》 CAS CSCD 北大核心 2022年第4期18-23,共6页 Journal of Biology
基金 江苏省青年基金项目(BK20190610)。
关键词 甲羟戊酸 MVA途径 RNA支架系统 大肠杆菌 GFP mevalonate MVA pathway RNA scaffold system E.coli GFP
  • 相关文献

参考文献1

二级参考文献49

  • 1岳鹏.异戊二烯的生产技术及市场分析[J].炼油与化工,2006,17(2):3-5. 被引量:15
  • 2Whited GM, Feher FJ, Benko DA, et al. Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol, 2010, 6(3): 152-163.
  • 3Beck ZQ, Cervin MA, Nielsen AT, et al. Compositions and methods of PGL for the increased production of isoprene: US, 8455236 B2. 2013-06-04.
  • 4Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenerg Res, 2012, 5(4): 814-828.
  • 5Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem, 2002, 66(8): 1619-1627.
  • 6Rodriguez-Concepci6n M, Boronat A. Elucidationof the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol, 2002, 130(3): 1079-1089.
  • 7Rohmer M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem, 2003, 75(2/3): 375-388.
  • 8Eisenreich W, Bacher A, Arigoni D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci, 2004, 61(12): 1401-1426.
  • 9Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J, 1993, 295(Pt 2): 517-524.
  • 10Schwarz KM. Terpen-biosynthese in Ginkgo biloba: eine Uberraschende geschichte. Zurich, Switzerland: Eidgenossischen Technischen Hochschule, 1994.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部