摘要
Foliar nitrogen(N)application is an effective strategy to improve protein content and quality in wheat kernels,but the specific effects of N forms remain unclear.In a two-year field study,foliar application of various N forms(NO_(3)^(-),urea,NH_(4)^(+))at anthesis was performed to measure their effects on wheat grain protein accumulation,quality formation,and the underlying mechanisms.Foliar application of three N forms showed varying effects in improving grain gluten proteins and quality traits.Under NH_(4)^(+) application,there was more post-anthesis N uptake for grain filling,with relatively strong increase in enzyme activities and gene expression associated with N metabolism in flag leaves at 8–20 days after anthesis(DAA),whereas its promotion of grain N metabolism became weaker after 20 DAA than those under NO_(3)^(-) and urea treatments.More N was remobilized from source organs to grain under treatment with foliar NO_(3)^(-) and urea.Genes controlling the synthesis of gluten protein and disulfide bonds were upregulated by NO_(3)^(-) and urea at 20–28 DAA,contributing to increased grain protein content and quality.Overall,foliar applications of NO_(3)^(-) and urea were more effective than those of NH_(4)^(+) in increasing grain N filling.These findings show that manipulating the source–sink relationship by reinforcing grain N metabolism and N remobilization is critical for optimizing grain protein accumulation and quality formation.
基金
supported by the National Natural Science Foundation of China(31971860).