期刊文献+

基于深度学习的手势识别系统的设计与实现 被引量:1

Design and Implementation of Gesture Recognition System Based on Deep Learning
下载PDF
导出
摘要 针对无线投影系统市场需求量较大这一情况,文章设计一款基于深度学习的手势识别系统,采用ARM-A9开发板进行开发,通过摄像头获取用户手部图像数据,运用OpenCV机器视觉库进行图像处理,再使用tensorflow深度神经网络对处理后的图像进行模型训练,从而更好地识别用户的手势姿态,结合无线投影技术实现手势识别技术的进一步应用。 In view of the large market demand for wireless projection system,this paper designs a gesture recognition system based on deep learning,which is developed with ARM-A9 development board.The user’s hand image data is obtained through the camera,and the OpenCV machine vision library is used for image processing.Then the processed image is model trained with tensorflow deep neural network,so as to better recognize the user’s gesture,combined with wireless projection technology,the further application of gesture recognition technology is realized.
作者 李澥 蔡振雄 詹文杰 邱梓逸 LI Xie;CAI Zhenxiong;ZHAN Wenjie;QIU Ziyi(Software Engineering Institute of Guangzhoun(Guangzhou),Guangzhou 510980,China)
出处 《现代信息科技》 2022年第11期106-109,共4页 Modern Information Technology
基金 2020年广东省“攀登计划”专项资金重点项目(pdjh2020a0859)。
关键词 人机交互 tensorflow深度神经网络 OPENCV human computer interaction tensorflow deep neural network OpenCV
  • 相关文献

参考文献5

二级参考文献38

  • 1金波,张正炳.信号与系统分析[M].北京:高等教育出版社,2011.4.
  • 2I,EVIN A,NADLER B. Natural image denoising: opti- mality and inherent bounds [ C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 : 2833-2840.
  • 3BUADES A, COLL B, MOREL J M. Image denoising methods :a new nonlocal prineiple [ J ]. SIAM Review, 2010,52( 1 ) : 113-147.
  • 4AZZABOU N,PARAGIOS N, GUICHARD F. Image de- noising based on adapted dictionary computation [ J ]. IEEE International Conference on Image Processing (ICIP) ,2007:109-112.
  • 5DABOV K, FOI A, KATKOVNIK V,et al. Image de- noising by sparse 3D transform-domain collaborative fil- tering [ J ]. lEEE Transactions on Image Processing, 2007,16 ( 8 ) : 2080-2095.
  • 6BUADES A,COLL B, MOREL J M. A review of image denoising algorithms, with a new one [ Jl. Muhiseale Model. Simul. ,2005,4 (2) :490-530.
  • 7ZHONG H,YANG C,ZHANG X. A new weight for non- local means denoising using method noise [ J ]. IEEE Signal Processing Letters, 2012,19 ( 8 ) : 535-538.
  • 8GETMAN A, YUN S H, KIM T C. Improved nonloeal means denoising for images with tone gradients [ C ]. 2012 International Soe Design Conferenee (ISOCC), 2012 : 328-331.
  • 9ZHANG X,FENG X, WANG W. Two-dirwction nonlo- cal model for image denoising [ J]. IEEE Transactions on Image Processing,2013,22(1 ): 408-412.
  • 10VILLE D V D, KOCHER M. SURE-based non-local means [ J]. IEEE Signal Processing Letters, 2009, 16(11): 973-976.

共引文献78

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部