期刊文献+

Vertical velocity and transport in the South China Sea 被引量:2

下载PDF
导出
摘要 Deep water in the South China Sea is renewed by the cold and dense Luzon Strait overflow.However,from where and how the deep water upwells is poorly understood yet.Based on the Hybrid Coordinate Ocean Model reanalysis data,vertical velocity is derived to answer these questions.Domain-integrated vertical velocity is of two maxima,one in the shallow water and the other at depth,and separated by a layer of minimum at the bottom of the thermocline.Further analysis shows that this two-segmented vertical transport is attributed to the vertical compensation of subsurface water to the excessive outflow of shallow water and upward push of the dense Luzon Strait overflow,respectively.In the abyssal basin,the vertical transport increases upward from zero at the depth of 3500–4000 m and reaches a maximum of 1.5×10^(6) m^(3)/s at about 1500 m.Deep water upwells mainly from the northeastern and southwestern ends of the abyssal basin and off the continental slopes.To explain the upward velocity arising from slope breaks,a possible mechanism is proposed that an onshore velocity component can be derived from the deep western boundary current above steep slopes under bottom friction.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第7期13-25,共13页 海洋学报(英文版)
基金 The National Key Research and Development Program of China under contract No.2019YFC1408400 the National Natural Science Foundation of China under contract Nos 41876029,41821004 and 41776042.
  • 相关文献

参考文献5

二级参考文献32

共引文献104

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部